铁路特有工种体力劳动强度调查

北京铁路局体力劳动强度调查组(100038) 李 理(执笔)

体力劳动强度是岗位评价的主要指标之一,正确区分体力劳动强度的差别,为实行结构工资提供科学依据是非常重要的。社会上的工种岗位有其共性和个性两个方面,铁路是以运输为主,除有共性外,其个性较突出。铁路系统的工种岗位大约600多个,其中铁路特有工种岗位300多个,主要是以体力劳动与技术相结合的技术工人,不同的岗位在体力劳动和技术上有所侧重,为了配合工资改革,加强劳动保护的科学管理,改善劳动条件,建立合理的卫生制度,我们对铁路特有工种岗位进行体力劳动强度调查。

1 对象与方法

1.1 对象 选择铁路特有工种,车辆钳工、内燃钳工、制动钳工、制检钳工、验瓦工、电机钳工、检查工、养路工、线路测量工及装卸工共10个工种18个岗位。共54人,皆为男性,平均年龄31岁(20~42岁),平均身高167.8cm(156~180.5cm),平均体重65.2kg(48~80,5kg),平均体表面积 1.7000cm²(1.4130~2.0270cm²)。

1.2 方法 用FTQLT-I型肺通气量计,按国家标准GB3869-83《体力劳动强度分级》内规定的测定方法进行测定。每个岗位不少于3人,每项动作不少于10次测量。为了保证测定的科学性和准确性,对检测人员进行培训,并做到三定(定人、定时间、定仪器)制度。调查指标有劳动时间率、能量代谢率、劳动强度指数和分级。

2 结果与讨论

2.1 检测结果 内燃钳工的两个岗位定为体力劳动强 度 I 级, 其他16个岗位皆为 I 级, 属于重体力劳动作业(见表 1)。

2.2 劳动工时 最少劳 动 时 间 率 为55.83%,即为267.98分钟,最多劳动时间率为93.9%, 即450.7分钟,平均为79.7%,即为382.66分钟。按国家标准限值规定,一个劳动日内净劳动时间不超过400分钟,本次调查超过限值的有 8 个岗位,占44.44%。

2.3 能量消耗 调查结果最低能量代谢率为2.1434千 卡/分·m², 耗能值为1814.02千卡/日·人, 最 高能量 代谢率为3.2108千卡/分·m², 耗能值为2671.33千卡

表! 各岗位劳动强度检测结果

		平均劳	平均能量代	总耗能量	劳动强	
岗	位	动时间		(千卡/	71 -91 254	分级
		率(%)	/分·米2)	日・人)	度指数	
车辆	钳工					
钩	复作业	84.35	2.8442	2287.72	22.3	I
货	多 台车	88.30	2.9550	2300.72	23.4	I
车	体木エ	92.20	2.4890	2033.04	20.2	1
车	盘作业	87.00	3,0098	2495.46	23.7	1
内燃	钳工					
车	下作业	70.83	2. 2318	1628.49	18.5	I
轴:	簡作业	70.00	2.1424	1814.03	17.1	I
柴	由机	81.00	2.8100	2325.12	22.1	I
制	金钳工	8 '. 37	2,8842	2432.05	22.7	I
制	力钳工	81.44	3, 1041	2532.96	24.2	I
电相	見钳工	79.00	2.5202	2092.77	20.1	I
验7	瓦工	93.90	2,9796	2374, 11	23.7	I
检?	乍工	76, 25	2.8431	2306.27	22.2	I
线路	五量便	90.00	3,1580	2541.94	24.8	I
养路	Ľ.					
改证	直作业	69.79	3.0643	2242, 19	23.5	1
清	筛作业	55.83	3.0542	2433.66	23, 1	I
捣	固作业	76.25	3,2108	2671,33	24.8	I
装卸:	I.					
司	索作业	82.00	2.8500	2459, 95	22.41	I
叉	车作业	72.70	3,1991	2667.26	24.6	I

注:能量代谢率单位没有用焦耳,因国标内指数是用千卡/ 分·米²。

/日·人,平均能量代谢率2.8585千卡/分·m³,耗能值为2332.56千卡/日·人。按8小时工作日内耗能值不超过1500千卡/日·人参考标准,本次调查的18个岗耗能值均超标。

2.4 特有工种体力劳动强度的特点

2.4.1 劳动工时长,能量耗值大。如车辆钳工,制检钳工和验瓦工等,净劳动时间超过400分钟,能耗值超过1500千卡/日·人,因为该岗位在规定的时间内(2~3天),必须完成定额任务。

2.4.2 劳动时间短,能量耗值大。属于该特点的工种 为养路工和装卸工,最短时间为268分钟,而能耗值 为2433.7千卡/日·人,因为该工种在火车运行时心 内,间隙中作业,有一定限制,必须在短时间内完成 定额任务。

2.4.3 各工种单项活动能量代谢率较高(见表 2)。

表2 各工种单项活动时间和能量代谢率

工种名称	单项活动所需时间 (分)		单项活动能量代谢率 (千卡/分・平方米)		
	主 清*	辅助活**	主 活	辅助活	
车辆钳工					
钩缓作业	322.9	82	3.5183	2.5138	
货修台车	337.8	86	3.8440	3.2400	
车体木工	295.56	147	3.2202	2.3423	
车盘作业	321.6	96	4.2325	2.0650	
内燃钳工					
车下作业	248.98	91	3,2294	2.0742	
轴箱作业	245	91	3.1244	2.0743	
柴油机作业	276	112.8	4.5472	2.7138	
制检钳工	289	116	3.8869	2,2179	
制动钳工	286.9	104	3.4882	2.6362	
电机钳工	239.2	140	3.7906	2.0350	
验瓦工	316,7	134	3.7267	2.7579	
检车工	283	83	4.3816	2.3436	
线路测量工	416	16	3, 2525	1.3652	
养路工					
改道作业	275	66	4.3610	3.0275	
清筛作业	186	81	4.9972	3,9125	
捣固作业	288	78	4.7025	2, 2266	
装卸工					
司索作业	271	122.6	3,5420	2.7964	
叉车作业	304	44.9	3,9147	1, 2252	

^{*}主活包括该岗位的主要活动工作,如检修作业包括拆卸、 组装。

在岗位劳动过程中,有主要劳动和辅助劳动。各岗位主要单项劳动和辅助单项活动是不同的。从调查特有工种中可以看出,主要单项活动占净劳动时间的70%以上,有的工种岗位占90%,而岗位工人的主要单项活动的能量代谢率也相应的高,这类岗位耗能值都超过2000千卡/日·人,说明铁路特有工种岗位,体力劳动强度大,主要的劳动占主导地位,辅助劳动次

之,属于重体力劳动强度,影响工人身体健康,必须 控制劳动时间,调整劳动定额。

2.4.4 内燃钳工两个岗位属于中等劳动强度,如车下作业和轴箱作业,然而该岗位工作特点是在车下作业促使工人强迫体位,工人的疲劳感非常强烈,在体力劳动强度分级上不能表现出来。

2.4.5 特有工种另一个特点是,不是连续作业。比如在一个月内分段作业,一个任务 3 ~ 4 天,完成任务后,可能休息 2 ~ 3 日再作,也可能连续 7 ~ 8 天工作再休息,有时是不规律的,有时有超定额超劳等现象,在体强分级上也表现不出,因此我们认为铁路特有工种岗位,除体力劳动强度大以外,还有工作时间不规律性,强迫体位的特点,不能在分级上表现出来,有待今后探讨。建议按照铁路运输的 特点 和规律,合理的调整工人的劳动时间和劳动定额,逐步实现机械化作业。

3 经验

在调查和测定过程中,我们认为该注意以下几方面才能正确反应出体力劳动强度。

- 3.1 详细的工时记录和正确的单项活动分类,是测定能量代谢率的重要基础,尤其是单项活动分类是更重要的,分类不清会使强劳动划分为轻劳动,或相反。
- 3.2 对被测者进行宣传解释,良好配合,避免人为的加大呼吸,在正常作业的过程中进行能量代谢测定,测定者不要离开工作地点,免出异差,以防返工。
- 3.3 能量代谢的单项活动测量不能在一个工人身上测量,同样活动可在同岗位的其他工人测量,这样会避免工人疲劳和烦恼,避免影响生产任务的完成。
- 3.4 铁路工作的时间,工种岗位不同时 间 不 同,有 5h,6h、8h、12h、24h等工作日, 国家标准为 8 小时工作日计算,不同的时间换算成 8 小时,有的岗位能耗值加大了、有的岗位能耗值减少了。建议国家标准制定者应考虑不同劳动时间问题。
- 3.5 劳动时间不规律、强迫体位等因素,国家标准制 定者也应考虑。

(承蒙于永中教授指导,在此表示感谢。)

(上接第71页)

- 2 陈镜琼,主编。接尘工人矽肺和肺癌研究。武汉: 同济 医科大学出版。1991; 192
- 8 Bone CM, et al. Comparison of foundry dust evaluation by various methods. Am Ind Hyg Assoc J 1975; 37(9):537
- 4 TKACEV. VV. Study of mine dust by a twostep gravimetric method. Gigiena Truda I Professional nye Zabolevanija, 1979; 5, 32(in Russian)
- 5 符绍昌,等。车间空气中呼吸性砂尘 卫生 标准 草案 1992.5

^{**}辅助活包括准备工具、搬运等。