。监测与检验。

微波消解 双道原子荧光光谱法同时测定血中的汞和砷

Simultaneous determination of mercury and arsenic in blood with microwave digestion dual channel atomic fluorescence spectromery

杨福成,裴雯 YANG Fucheng PEIWen

(重庆市职业病防治院, 重庆 400060)

摘要: 采用 一次性微波消解 氢化物发生原子荧光光谱 法,同时测定血中汞、砷。该方法具有取样品量少、操作简 单、时间短、灵敏度高等优点。

关键词: 微波消解 双道原子荧光光谱法; 汞; 砷中图分类号: 0614.243; 0613.63 文献标识码: B 文章编号: 1002-221 X(2008)03-0196-03

生物材料中汞含量测定为急性汞中毒诊断及鉴别诊断最可靠依据,人体在摄入汞后血汞迅速升高,可作为诊断的可靠指征。砷接触者,血砷、尿砷增高可作为病因学诊断的参考指标。目前,汞和砷常见的分析方法主要有比色法、分光光度法、原子吸收法等。这些方法均存在操作复杂,分析时间长,灵敏度低,样品处理繁琐且待测元素易损失等缺点。微波消解是一种崭新的样品预处理技术,已成功应用于多个领域的样品处理[12]。本文采用一次性微波消解 氢化物发生原子荧光光谱法同时测定血中汞、砷,具有取样品量少、操作简单、时间短、试剂用量少、灵敏度和准确度高等优点。

1 材料与方法

1.1 仪器

AFS230E型双道原子荧光光度计(北京海光仪器公司), 汞、砷编码空心阴极灯(北京有色金属研究总院), MDS6型 温压双控微波消解仪, ECH-1 型电子控温加热板(均为上海 新仪微波化学科技有限公司)。

1.2 试剂

硝酸、盐酸、均为优级纯。高氯酸、硼氢化钾、氢氧化钠、硫脲、抗坏血酸、均为分析纯。试验用水为去离子水 (电阻为 18 24 $^{M}\Omega$)。实验所用器皿需经 1+1 硝酸浸泡过夜后洗净待用。混合还原剂(100 g L 硫脲和 100 g L 抗坏血酸): 10 g 硫脲加约 80 m m g 加热溶解,待冷却后加入 10 g 抗坏血酸,加水至 100 m g 储存在棕色瓶中,可保存 1 个月。 20 g g

质中心提供。 汞、砷标准应用液,临用前将汞、砷标准贮备液分别用 5+95 盐酸逐级稀释,最后稀释为含汞 $100 \, \mu$ ${}^g/{}^L$ 砷 $500 \, \mu$ ${}^g/{}^L$ 的混合标准应用液。

1. 3 实验方法

1. 3 1 样品的采集 依次用 3% (V/V) 硝酸溶液、去离子水、碘酒、 75% 乙醇清洗皮肤,用通过检验的同一批号的一次性注射器抽取静脉血 $0.5\sim1.5$ m, l 立即盛于通过检验的肝素抗凝瓶中混匀。

1.3.2 试样预处理 准确吸取 0.25~0.50 m 限匀样品于微波 消解系统配备的聚四氟乙烯溶样杯中 加入 3 m 硝酸、0.3 m 高氯酸、1.5 m 水混匀,密闭后置于微波消解炉中,同时做 2 个试剂空白。微波消解条件见表 1。消解完成后,让消化罐于室温下自然冷却 卸压,取出内杯置于电子控温加热板上,130 $^{\circ}$ C以下赶酸至近干。冷却后用适量水多次将消解液转移至 $^{\circ}$ 10 $^{\circ}$ 1月 塞比色管中,加入 $^{\circ}$ 1+1 盐酸 1.0 $^{\circ}$ 1 混合还原剂 1.0 $^{\circ}$ 1月 混合还原剂 1.0 $^{\circ}$ 1月 用水定容至刻度。混匀。室温放置 30 $^{\circ}$ 10 $^{\circ}$ 10 $^{\circ}$ 1

表 1 微波消解条件

步骤	压力 (MPa)	时间 (min)	功率 (W)
1	0. 3	2	400
2	0. 6	2	600
3	1. 0	4	600
4	1. 4	5	600

1.33 汞、砷标准系列的配制 取 1只 100 m和 5只 25 ml 的容量瓶,分别加入汞、砷混合标准应用液 0.00. 0.10. 0.20. 0.50 1.00. 1.50 ml 再分别向 5只 25 m容量瓶中加入 1+1 盐酸 2.5 ml 混合还原剂 2.5 ml 100 m的容量瓶中加入 10 ml 1+1 盐酸、 10 m 混合还原剂,最后用水定容混匀,室温放置 30 m n后测定。定容后汞(砷)标准系列分别为 0.00 (0.00)、 0.40 (0.00)、 0.80 (0.00) 0.20 (0.00) 0.40 (0.00) 0.80 (0.00) 0.00 (0.00) (

1.34 仪器工作参数见表 2

2 结果与讨论

2.1 仪器参数的选择

光电倍增管负高压和灯电流的增大均能增加荧光强度,但过高的负高压会产生较大的噪声,影响测定重现性。灯电流越大,灵敏度越高,但灯电流大会降低灯的使用寿命。通

收稿日期: 2007-04-10 修回日期: 2007-09-17 作者简介: 杨福成 (1965-), 男, 副主任技师, 主要从事卫生

理化检验工作。 ?1994-2016 China Academic Journal Electronic Publishing House. All rights reserved http://doi.org/10.000/10.000

表 2 仪器工作参数

	仪器参数	项目	 仪器参数
	270	载气流量 (m l/m i⁄n)	400
原子化器温度(℃)	200	屏蔽气流量 (m l/m in)	1 000
原子化器高度 (mm)	8	读数时间(S)	10
汞灯电流 (mA)	30	延迟时间(S)	1
砷灯电流 (mA)	60	重复次数	1
读取方式	Peak A rea	采样及注入泵速(r/m in)	100
测量方式	Std Curve		

60 mA时,可以得到很好的线性及灵敏度。载气流量过大会稀释原子浓度,降低灵敏度;过小难以将气体混合物迅速带出。本文选用 400 ml/min载气流速,1000 ml/min屏气流速。2.2 样品消解条件的选择

由于血液样品成分复杂,有机物含量多,常压下用酸不易被消解完全,特别是汞元素易损失。微波消解是近年来新出现的样品消解手段,其特点是时间短,试剂用量少,无污染,元素不易损失。由于过氧化氢与血液样品产生大量泡沫,因此采用硝酸 高氯酸混酸消解。经试验,本文方法消解 0.25 ~ 0.50 $^{\rm m}$ 恤液样品,最后消解液呈无色透明。电热板赶酸时,温度不能过高(以 130 $^{\rm C}$ 左右为宜 $^{\rm c}$ 以防汞损失,同时应将样品消化后的余酸赶尽,以防硝酸氧化以后加入的硫脲和抗坏血酸。

2.3 盐酸浓度的选择

氢化物反应要有一定的酸度,当盐酸浓度在 2% ~ 20%

时,汞、砷的荧光强度变化不大,但盐酸浓度低于 2% 时,荧光强度显著降低,在 5% 盐酸介质中测定汞、砷混标系列线性良好。

2.4 硼氢化钾浓度的选择

实验发现。硼氢化钾浓度低于 10 g/L时,汞测定荧光强度高,而砷荧光强度较低。这主要由于汞只需要还原为气态。不需生成氢化物,而砷需生成气态氢化物才能被载气带入原子化器,而过高的硼氢化钾产生大量氢气,稀释了汞蒸气和氢化物浓度而使灵敏度下降。本文选择 20 g/L的浓度时,汞和砷均可达到满意结果。

2.5 方法的线性范围及检出限

本实验条件下线性范围: 汞 $0.0 \sim 6.0 \,\mu$ % \downarrow 回归方程 Y = 540 2^{X} —15.96 相关系数 \leftrightarrows 0.999 2 砷 $0.0 \sim 30.0 \,\mu$ % \downarrow 回归方程 Y \Longrightarrow 146 6^{X} —21.74 相关系数 \leftrightarrows 0.999 8 检出限: 对试剂空白连续进行 11 次荧光强度测定。其检测限按 DL \Longrightarrow 3 SD/K计算出汞、砷的检出限分别为 0.009 6.0 $0.042 \,\mu$ % \downarrow 以 0.50 m样品消解定容至 10 m, I 样品最低检出浓度为汞 $0.19 \,\mu$ g/ \downarrow 砷 $0.84 \,\mu$ g/ \downarrow

2.6 精密度实验

分别对含汞 0.4 20μ % L 含砷 20 100μ % L 的混合标准溶液按本方法连续 11 次进样,进行精密度实验,结果见表 3 由表 3 可知汞、砷的相对标准偏差分别为 1.58% \sim 203%、0.51% \sim 0.92%。

表 3 精密度实验

元素	浓度	—————————————————————————————————————							RSD					
儿糸	$(\mu \text{ g/L})$	1	2	3	4	5	6	7	8	9	10	11	均值	(%)
Hg	0. 4	172. 4	176. 7	177. 6	173. 5	179. 9	174. 7	177. 9	180. 3	179. 2	175. 3	180. 3	177. 1	1. 58
110	2. 0	1 044. 2	1 015. 6	1 028. 3	1 054. 2	1 064.1	1 027. 9	1 064. 9	1 023. 7	1 076. 1	1 064. 7	1 069. 2	1 048. 4	2. 03
As	2. 0	269. 6	268. 5	270. 3	267. 1	270. 5	265. 7	264. 8	263. 5	264. 6	267. 8	269. 2	267. 4	0. 92
$\mathbf{A}_{\mathbf{G}}$	10.0	1 462. 7	1 449. 5	1 457. 3	1 447. 6	1 469. 1	1 445. 9	1 452. 3	1 453. 7	1 461. 5	1 459. 2	1 463. 7	1 456. 6	0. 51

2.7 回收率实验

应用本法对样品进行加标回收实验,在线性范围内,对同一样品加入低、中、高3种浓度的汞、砷标准溶液,结果见表4

表 4 样品加标回收实验

元素	本底值 (µ & L)	加标量 (μ g/L)	测得值 (μ g/L)	回收率(%)	平均回收率
Hg	1. 12	0. 40	1. 53	102. 5	105. 2
		2. 0	3. 27	107. 5	
		4. 0	5. 34	105. 5	
As	6. 54	2. 0	8. 51	98. 5	98. 3
		10. 0	16. 50	99. 6	
		20. 0	25. 90	96. 8	

2.8 样品的稳定性实验

取汞、砷接触者的混合血样,分成 4组,每组 6份,当天测定 1组,其余在 4 % 冰箱中保存,分别于第 3 7、14天 各测定 1组,计算各组均值与当天测定均值的比较,结果见表 5 各相对偏差均在 10% 以内,说明样品于 4 % 冰箱中可保存 14

表 5 样品的稳定性实验

保存时间	样本数	7	₹	砷		
		测定均值 (μ g/L)	相对偏差	测定均值 (μ & L)	相对偏差	
当天	6	32. 6	_	56. 3	_	
第 3天	6	32. 1	1. 53	55. 7	1. 07	
第 7天	6	31. 7	2. 76	54. 8	2. 66	
第 14天	6	30. 3	7. 06	52. 6	6. 57	

2.9 方法的应用

采用本方法测定了汞、砷接触者血样各 15例, 正常人群 血样 17例, 结果见表 6 测定结果与实际样品相符合。

表 6 方法的应用

		汞		砷		
样品类别	例数		 定均値 (μ g/L)	测定范围 (μ & L)	测定均值 (μ & L)	
接触者	15	4. 35 ~48. 36	33. 72	23. 56~87	. 48 47. 23	
正常人群	17	0. 36 ~2. 82	1. 29	1. 56 ~ 6.	34 2.76	

保存 14 d ?1994-2016 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

3 小结

微波消解 氢化物发生原子荧光光谱法同时测定血液中 汞和砷,具有操作简便、快速、灵敏、准确度和精密度 高、易挥发元素损失少、污染小、消化完全等优点,值得 推广应用。

参考文献:

- [1] 徐伯洪,闫慧芳,工作场所有害物质监测方法 [M]. 北京,中国人民公安大学出版社,2003。341-342
- [2] 李淑花, 王保成. 连续测定化妆品中微量汞、砷、铅的方法研究 [J]. 中国卫生检验杂志, 2006 16 (4). 448-449

石墨炉原子吸收法测定工作场所空气中的镉

Determination of cadmium in workplace air with graphite electrode atomic absorption spectrometery

张金环 ZHANG Jin huan

(青海省疾病预防控制中心, 青海 西宁 810007)

摘要:以微孔滤膜浓缩采集工作场所空气中的镉,用酸消解后,进样于石墨炉,测定镉的含量。该方法的检出限为 0.13 μ 8/L 精密度在 3.25% ~ 6.78%,消化回收率在 94.5% ~ 98.6%之间。

关键词: *石*墨炉; 原子吸收; 工作场所; 镉中图分类号: R122 ; O614 242 文献标识码: B文章编号: 1002-221 X(2008) 03-0198-02

目前,对于作业场所空气中镉及其化合物的测定,国家标准检验方法是火焰原子吸收法[1]。 笔者采用了石墨炉原子吸收法测定工作场所空气中的镉,取得了较好的结果,现报告如下。

1 材料和方法

1.1 仪器

日立 Z-2700型单体石墨炉原子吸收光谱仪(日本), 7 JO-88 80型热解涂层石墨管(日本), 镉空心阴极灯(国产), 高纯氩气。

1.2 试剂

实验用水为去离子水; 镉标准溶液, 用光谱纯 镉棒配制 成 1 $^{mg/m}$ 镉标准储备液, 逐级稀释成 $^{25\,\mu\,g/L}$ 标准应用液; 硝酸 $^{(HNQ)}$, 优级纯; 高氯酸 $^{(HCQ)}$, 优级纯。

1.3 仪器工作条件

波长: 228.8 mm, 灯电流: 4 mA, 光谱通带: 1.3 mm, 积分时间: 5 。进样量: 20 μ 。 信号测量方式: 峰高, 交流 纵向塞曼背景校正。石墨炉工作程序见表 1

- 1.4 样品的采集
- 1. 4. 1 短时间采样 将装好微孔滤膜的铝合金采样夹,以 5 L/m in的流量采集 15 m in空气样品。
- 1.42 长时间采样 将装好微孔滤膜的小型塑料采样夹,以 1 L/min的流量采集 2~8 h空气样品。
- 1. 4 3 个体采样 将装好微孔滤膜的小型塑料采样夹佩戴在检测对象的前胸上部,以 1 L/m in的流量采集 2~8 h空气样品。

表 1 石墨炉工作程序

步骤	阶段	开始温度 (℃)	结束温度 (℃)	斜坡时间 (S)	保持时间 (^{S)}	氩气流速 (m l/m in)
1	干燥	50	100	40	0	200
2	干燥	100	140	40	0	200
3	灰化	300	300	20	0	200
4	原子化	1 500	1 500	0	5	30
5	净化	1 800	1 800	0	4	200
6	冷却	0	0	0	10	200

1.5 分析步骤

1.5 1 样品预处理 将采过样的滤膜放入 100 m 巨角烧瓶中,加入 5 m 消化液(硝酸 高氯酸 = 9:1)。在电沙浴上加热消解,保持温度在 200 ° 左右,待消化液基本澄清透明时,取下冷却,用纯水少量多次转移至 100 m 容量瓶中,并定容至 100 m 摇匀,供上机测定。

1.5 2 标准溶液的绘制 分别吸取镉标准应用溶液 0. 0.5 1.0 1.5 2.0 3.0 ^m 于 25 ^m 容量瓶中,用 1% HNO₃ 定容至刻度,摇匀,分别配制成 0. 0.5 1.0 1.5 2.0 3.0 μ % L的标准系列。选择仪器最佳测定条件,自动进样石墨管,进样量为 20μ \downarrow 测定其吸光度。

1.53 样品测定 按仪器设置最佳条件测定样品及空白样品的吸光度,将样品吸光度值减去空白样品吸光度值,由标准曲线求得样品中镉的含量。

1. 5 4 计算 X= 100 C/V₀

X——空气中镉的浓度 (mg/m^2) , C——标准曲线上查出的处理液浓度 $(\mu \ g/\ L)$, V_0 ——标准采样体积 (L)

2 结果与讨论

2.1 消化液的选择

取 10张微孔滤膜,分别加入 25μ § I的镉标准应用溶液 1.0 ^m, I 平均分为两组,分别加入 5.0 ^mIHNO₃ +HCO₄ (9+1) 混合酸 ¹³ 和 5.0 ^mIHNO₃ 比较两种消化液的消解处理方法。前者消化回收率在 90% ~100% 之间,后者回收率在 80% 左右。因此,选用混合酸消化液为佳。

2.2 原子化条件的选择

分别选用 1100-1300-1500-1800 [©]为原子化温度,对 1.0μ [©]I的镉标准应用溶液进行测定。当原子化温度 1500 [©]

收稿日期: 2007-07-03 修回日期: 2007-09-01

[?]作者简介。张金环(1965—)女,理化检验主管技师。 ?1994-2016 China Academic Journal Electronic Publishing House, All rights reserved. http://www.cnki.net