。调查报告。

集装箱制造企业职业病危害因素控制对策调查

Study of control strategy on occupational hazards in certain container making enterprises

黄健, 文小勇, 胡浩, 黄振荣, 潘小锋 HUANG Jan WEN X ao yong HUH ao HUANG Zhen rong PAN X ao feng

(江门市职业病防治所,广东 江门 529000)

摘要: 运用职业流行病学方法, 调查某集装箱制造企业 职业病危害因素种类、来源、岗位分布、接触方式及控制措 施。按照工作场所职业病有害因素监测的采样规范、标准测 定方法及卫生标准检测企业技改前后职业病危害因素的浓度 (强度), 评价控制效果。

关键词: 集装箱制造业; 职业病危害因素; 电焊烟尘; 噪声

中图分类号: R135 文献标识码: B 文章编号: 1002-221X(2008)05-0316-03

随着经济全球化的发展,制造业纷纷向发展中国家转移。 中国集装箱制造是我国自改革开放以来,为适应国际运输业 的需求而发展 起来的 新型 机械 加工业, 目前 数量 已占 全球 制 造量的 90%, 从业工人 20余万。集装箱制造业存在着粉尘、 电焊烟尘、锰及其化合物、 苯系物、噪声等职业病危害因素, 有调查表明其职业病危害因素浓度或强度的超标较为严重, 电焊工尘肺和听力损伤的检出率较高[1~4]。因此,加大对集 装箱制造业职业病危害因素的治理力度刻不容缓。为了解集 装箱制造业的职业病 危害因素,研制具有集装箱制造行业特 点的卫生防护措施,降低职业病的发生率,保护劳动者的健 康、我们采取系列防护措施并评价其防护效果、现将结果报 告如下。

1 方法和内容

1.1 方法

运用职业流行病学方法,对某集装箱企业职业病危害因 素种类、来源、岗位分布、接触方式及其控制措施进行调查。 1.2 内容

对集装箱企业技改前后作业场所的职业病危害因素进行 检测,分析比较治理效果,以验证治理措施的可行性。工作 场所有害物质的测定按《工作场所空气中有害物质监测的采 样规范》(GBZ159-2004)和《工作场所空气有毒物质测定》 (CBZ160-2004) 进行检测,连续采样 3 d 短时间接触浓度 和时间加权平均浓度取 3 d之中的最高值,评价按《工作场所 有害因素职业接触限值化学有害因素》(GBZ).1-2007)和 《工作场所有害因素职业接触限值物理因素》(GBZ). 2-2007) 进行,其他检测均按国家的相关标准进行。所有检测仪器均

收稿日期: 2008-02-13 修回日期: 2008-05-26

经广东省计量检测中心检定合格。

1.3 统计学分析

结果采用 $SPSS_{10.0}$ 0软件包中的 检验、 χ^2 检验方法进行 统计分析。

2 结果

2.1 职业卫生调查

某集装箱企业始建于 90 年代初期, 主要生产各种类型的 集装箱。生产工艺流程为:钢卷开卷→零件制作冲压成型→ 顶板线焊接→侧板线焊接→前端线焊接→后端线焊接→底架 线焊接→总装线焊接→整箱打砂→清箱台→油漆线 (调漆房 →喷底漆→喷中间漆→喷面漆→烘干)→装地板、贴商标、 试水→成品。生产过程中存在的主要职业病危害因素是电焊 烟尘、锰及其化合物、苯系物、噪声和高温等。

2.2 不同职业病危害因素不同岗位防护措施的调查(见表 1) 2.3 控制效果

2.3.1 整改前后电焊烟尘、锰及其化合物、噪声、高温测定 结果 在标箱车间的不同岗位采用不同整改措施后电焊烟尘 浓度的合格率由 5% 上升到 85%, 经 χ^2 检验差异有统计学意 义 $(\chi^2 = 25.859$ P<0.01), TWA由 11.2 mg/m³ 下降到 2.8 mg/m³, 经 检验差异有统计学意义 (≒ 9.817 P< 0.01); 锰及其化合物浓度的合格率由 30% 上升到 90%, 经 χ^2 检验差 异有统计学意义 (χ² = 15.0 P< 0.01). TWA由 0.392 mg/m²下降到 0.088 mg/m², 经 检验差异有统计学意 dB(A)下降到 86.8 dB(A), 经 t检验差异有统计学意义 (≒ 16.937, P< 0.01); 综合温度由 29.3℃下降到 26.6℃, 后噪声和综合温度合格率差异没有统计学意义。详见表 2 2.3.2 整改前后苯系物测定结果 标箱车间涂装部整改后苯 系物合格率由 53.3% 上升到 100%,苯的 STEL由 4.4 mg/m³ 下降到<0.3 mg/m³, TWA由3.4 mg/m³ 下降到<0.3 mg/m³, 经 检验差异有统计学意义 ($t_{SEL}=9.091$ P< 0.05, $t_{IWA}=$ 7. 472 \mathbb{R} 0. 05); 甲苯的 SIEL由 116.5 \mathbb{R}^{9} 下降到 23. 1 mg/m², TWA由 102 4 mg/m² 下降到 17.6 mg/m², 经 检验差 异有统计学意义 ($\xi_{\text{FL}} = 3.847$, P < 0.05, $\xi_{\text{WA}} = 3.648$, P <0.05); 二甲苯的 STEL由 67.5 mg/m³ 下降到< 1.7 mg/m³, TWA由 55. 8 mg/m³ 下降到 < 1.7 mg/m³, 经 t检验差异有统 计学意义 ($\xi_{NEI} = 4.472$) P<0.05 $\xi_{NEA} = 4.259$ P<0.05)。 详见表 3.

Electronic Publishing House. All rights reserved. http://www.cnki.net

作者简介: 黄健 (1965-), 男, 副主任医师, 主要从事职业病危 放射卫生防护的检测与评价及职业病防治工作

表 1 职业病危害因素及其防护措施调查结果

中国工业医学杂志 2008年 10月第 21卷第 5期

			37 3A35 43 = 1 A714			
职业病危	设置岗位		管理措施			
害因素	以直闪世	岗位防护设施	整体设施	个人防护措施	自	
电焊烟尘、	顶板线和侧板线,前端线的自动焊	随机近点移动式吸烟罩	将标箱车间 258	电焊作业工人: 复式防尘	包括设立职	
锰及其化合	前端线的装框台和角柱台,后端线	上方式吸烟罩	扇固定窗均改为	口罩、防紫外线的防护眼	业卫生组织	
物	的后角柱、装框台、门耳朵、清理台		百叶窗;在屋顶	镜、电焊面罩	机构,建立	
	底架线的底架组装、底架侧翻台	下吸式排风罩	增加 12台 DT40-	箱内焊接和打砂作业工	健全职业病	
	和鹅颈槽		12型屋顶轴流风	人: 送风头盔或面罩	防治管理、	
	总装线的总装台、箱内花焊台、	头顶送风的侧吸式排风罩	机		职业健康监	
	侧板与侧梁、侧板与角柱、顶板纵				护、职业病	
サ	缝和顶板横缝、清箱台 				危害因素检	
苯系物	涂装部喷漆房	大功率的抽风和多级水帘		防毒口罩和正压送风式喷	测、个人防	
		过滤系统,全封闭负压作 业、自动喷漆		漆帽	护用品发	
	涂装部调漆房	上方式排风罩, 低毒的原材			放、职业卫	
	וואל הוא אים ואי ויא	料替代高毒的含苯原材料			生防护知识	
噪声	标箱车间顶板线和侧板线	帆布皮带输送钢板材料		降噪值为 31 dB(A)的防	培训、日常	
"木广"	冲压车间冲压机械	装配吸声装置		护耳塞	监督和奖罚	
	/ 1 /±= 1-1/ 1 /±= 1/ 6 1/%				等职业卫生	
高温	标箱车间的顶板线、侧板线、前端 线、后端线、底架线、总装线	定时、定点放置冰块、延长工人工间休息时间,发放含盐清凉饮料等		隔热防护服	管理制度	

表 2 电焊烟尘、锰及其化合物、噪声、高温整改前后测定结果的比较

测定地点		电焊烟尘(TWA)(mg/m³)		锰及其化合物 (TWA)(mg/m³)		噪声 〔dB(A) 〕		综合温度 (℃)	
		整改前	整改后	整改前	整改后	整改前	整改后	整改前	整改后
		3. 2	2. 4	0. 076	0 041				
页板线		8. 5	2. 8	0. 134	0 054	88. 7	83. 2	29 3	26. 9
则板线		6. 1	4. 2	0. 125	0 089	88. 3	84. 6	29.5	27. 0
前端线	自动焊	9. 7	3. 0	0. 145	0 073	91. 4	88. 3	29.7	26. 7
	装框台	9. 5	2. 0	0. 156	0 063	90. 3	86. 5	29 3	27. 2
	角柱台	11. 2	4. 3	0. 523	0 137	90. 8	86. 6	29 2	26. 3
5端线	后角柱	10. 3	2. 0	0. 158	0 113	89. 8	87. 3	29 1	26. 5
	门耳朵	12. 8	1. 3	0. 714	0 085	90. 4	86. 3	29 0	26. 4
	装框台	9. 5	2. 3	0. 367	0 062	88. 9	86. 8	29 4	26. 2
	清理台	5. 6	1. 6	0. 126	0 027	90. 8	86. 4	29 1	26. 2
底架线	鹅颈槽	17. 2	3. 1	0. 783	0 052	89. 0	84. 9	29 0	26. 5
	底架组装	13. 4	2. 3	0. 534	0 139	90. 9	88. 0	29.7	26. 9
	底架侧翻台	13. 1	6. 5	0. 259	0 022	90. 1	86. 7	29 3	26. 5
总装线	总装台	13. 7	2. 8	0. 531	0 137	90. 2	87. 6	29 0	26. 4
	箱内花焊台	18. 6	3. 5	0. 935	0 346	91. 6	88. 2	29 3	26. 7
	侧板与侧梁	12. 5	3. 2	0. 463	0 174	89. 8	84. 6	29 6	26. 3
	侧板与角柱	15. 6	2. 6	0. 721	0 062	90. 4	85. 7	29 1	26. 2
	顶板纵缝	12. 3	3. 0	0. 453	0 035	90. 5	88. 1	29 4	26. 4
	顶板横缝	13. 6	2. 3	0. 523	0 027	89. 6	86. 5	29 1	26. 3
	清箱台	7. 6	1. 7	0. 121	0 024	92. 7	89. 1	28 8	26. 7
匀值		11. 2	2. 8	0. 392	0 088	90. 3	86. 8	29 3	26. 6

注:电焊烟尘的 PC-TWA为 4 mS/m³,锰及其化合物的 PC-TWA为 0.15 mS/m³,8 h工作时间噪声的标准为 85 dB (A),综合温度 $\geq 25^{\circ}C$ 为高温作业。

3 讨论

集装箱生产过程中产生的主要职业病危害因素是电焊烟 尘、锰及其化合物、噪声、苯系物、高温等, 这与一些学者 的调查结果相一致[1~4]。国外研究电焊烟尘对职业工人危害较多,Painer等[5]认为金属烟尘引起呼吸道炎症增多;Haktd等[6]研究造船企业电焊工由于接触锰烟尘,神经系统和

测定 ·	苯				甲苯				二甲苯			
	整改前		整改后		整改前		整改后		整改前		整改后	
	SIEL	TWA	SIEL	TWA	SIEL	TWA	SIEL	TWA	SIEL	TWA	SIEL	TWA
 调漆房	3. 6	2. 5	< 0. 6	< 0. 6	60. 8	52 3	16. 8	14. 4	35. 3	28. 2	< 3. 3	< 3. 3
喷底漆	5. 3	4. 2	< 0.6	< 0.6	149. 1	134 2	24. 3	18. 2	89. 6	76. 3	< 3. 3	< 3. 3
中间漆	4. 5	3. 3	< 0.6	< 0.6	140. 3	126 5	20. 7	17. 2	78. 2	65. 1	< 3. 3	< 3. 3
喷面漆	5. 5	4. 6	< 0.6	< 0.6	189. 1	165 3	37. 9	25. 9	103. 8	85. 9	< 3. 3	< 3. 3
烘干	3. 2	2. 6	< 0.6	< 0.6	43. 3	33 6	15. 8	12. 4	30. 5	23. 4	< 3. 3	< 3. 3
均值	4. 4	3. 4	0. 3	0. 3	116. 5	102 4	23. 1	17. 6	67. 5	55. 8	1. 7	1. 7

表 3 整改前后苯系物测定结果

注: 苯的 PC-SIEL为 10 mg/m³, PC-TWA为 6 mg/m³, 甲苯的 PC-SIEL为 100 mg/m³, PC-TWA为 50 mg/m³, 二甲苯的 PC-SIEL为 100 mg/m³, PC-TWA为 50 mg/m³。

呼吸系统病理症状均较对照组多,瑞典的一项研究表明,电焊工接触锰能引起 Parkinson病和其他神经紊乱症状¹⁷,由于集装箱生产逐渐由发达国家向发展中国家转移,对其职业病危害因素的控制措施进行研究尤为重要。

集装箱制造业电焊烟尘的危害尤为突出。翟敬雄等对一 集装箱焊接车间的调查结果表明,焊接车间工作场所电焊烟 尘的 TWA和 STEL最大超标倍数分别为 0.9倍、1.23倍[8]。 我市最近两年在集装箱企业已发生十多例电焊工尘肺。本研 究调查的集装箱企业在 90年代初建成, 当时没有进行职业病 防护设施方面的设计,在整改前除了涂装部喷漆房有少量局 部抽风设施外,其他存在职业危害因素的作业场所均没有防 护设施。为了控制和消除职业病,保障劳动者的健康,该企 业根据集装箱制造的工艺流程特点在顶板线、侧板线和前端 线的自动焊岗位设置了随机近点移动式吸烟罩,在前端线的 装框台和角柱 台以及 后端 线设置了上方式 吸烟 罩,在底架线 设置了下吸式排风罩。在总装线设置了头顶送风的侧吸式排 风罩等 4种局部的抽风设施。调查结果显示,标箱车间的电 焊烟尘的合格率由 5% 上升到 85%, 电焊烟尘的时间加权平均 浓度的均值由 11.2 mg/mg 下降到 2.8 mg/mg, 锰及其化合物 浓度的合格率由 30%上升到 90%, 锰及其化合物时间加权平 均浓度的均值由 0.392 mg/m³ 下降到 0.088 mg/m³, 说明实施 技术改造工程后,该企业职业病危害因素得到了有效控制。 由于集装箱部件体积较大,且焊接作业不固定,给固定式防 护带来困难,所以仍然有未达到国家职业卫生标准的作业点。 因此解决电焊烟尘职业病危害问题, 需采取综合治理措施。 除在工艺上采取局部通风。捕集电焊烟尘。随移动电焊机移 动的近焊点吸烟罩)的技术改造外,在车间内采取有组织的 通风,落实个人防护措施,加强日常监督管理也是改善作业 环境的有效措施。集装箱制造的焊接作业是一种劳动密集型、 劳动强度大的工作岗位,建立良好的工作环境,对于提高劳 动生产率起着重要的作用。

综上所述组织机构健全,管理制度落实,防护措施到位, 个人防护用品备齐使用,日常监管到位,进行综合治理是控 制集装箱生产职业病危害的关键所在,也是降低现有集装箱 制造业职业病发生率最主要的对策。

参考文献:

- [1] 许春生,程美文,沈德栋.某集装箱制造企业箱内焊接作业环境职业危害因素检测分析 [引.预防医学论坛,2005 11(3),269-270
- [2] 曾林陵, 林旭华, 丘创逸. 某集装箱制造企业职业病危害现状调查分析 [J. 中国职业医学, 2006, 33 (5): 351-353.
- [3] 王咸刚,张佩武. 集装箱生产职业卫生调查 [J]. 中国工业医学杂志, 2000, 13 (6): 366-367.
- [4] 刘淑兰, 吕爱军. 某集装箱制造厂噪声对听力危害调查 []. 职业与健康, 2001, 17 (1): 28-29.
- [5] PaḥmerK T. McNeill love R. Poole J R. et al. Inflammatory responses to the occupational inhalation of metal fume [J]. Eur Respir J. 2006. 27 (2): 366-373.
- [6] Halatek T. Sinczuk-Walczak H. Szimczak M. et al. Neurological and respiratory symptoms in shipyard welders exposed to manganese

 [J. Int J Occup Med Environ Health 2005 18 (3): 265-274
- [7] Fored CM, Fryzek JP, Brandt L, et al. Park inson s disease and other basal ganglia or movement disorders in a large nation wide cohort of Swedish Welders J. Occup Environ Med 2006 63 (2): 135-140
- [8] 翟敬雄,姜卫东、集装箱焊接车间焊接烟尘治理措施 [J]. 中国卫生工程学,2007 6(1): 13-15.

(上接第 311页)

- [21] Zhai R. Liu G. Yang C. et al. The G to C polymorphism at 174 of the interleukin 6 gene is rare in a Southern Chinese population [J]. Pharmacogenetics 2001, 11 (8): 699-701.
- [22] RhsHP, LippsP May-Taube K, et al. Immunogenetic studies on HIADR in German coal miners with and without coal workers pneumoconjosis [J. Lung 1994, 172 (6): 347-354
- [23] 李建强、宋满景、彭则. 我国山西汉族煤工尘肺患者 HIA-DRBI 等位基因的调查 [』]. 中华劳动卫生职业病杂志,1999—17
- [24] 袁宝军, 张志欣, 幸宏芬, 等. 矽肺与人类白细胞抗原 -DRB1*和 DQB1*基因相关性的研究[J]. 中华劳动卫生职业病杂志, 2002 20(2), 93-96.
- [25] Zhai R. Liu G. Ge X. et al. Genetic polymorphisms of MnSOD GSIM1 GSIT1 and OGG1 in coal workers' pneumoconiosis J. J. Occup Environ Med. 2002, 44(4): 372-377.
- [26] Yucesoy B Johnson V J Kashon M L Lack of association between antioxidant gene polymorphisms and progressive massive fibrosis in coal miners J. Thorax 2005 60(6): 492-495

^{?1994-2016} China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net