表 4 低浓度 〇对女工妊娠合并症的影响

组别	调查人数	妊娠次数	妊娠恶阻	妊娠贫血	妊娠高血压	先兆流产
观察组	286	3 32	24(7. 23)	27(8.13)	31(9.34)	40(12 05)
对照组	275	308	13 (4. 22)	21 (6. 82)	14(4 55)	17(5.52)
χ²值			2 65	0.40	5. 61	8 39
P值			> 0.05	> 0.05	< 0.05	< 0.01
RR			1.71	1. 19	2. 05	2 18
95% CI			0 90~3 26	0 69~2 04	1 13~3 71	1. 28 ~ 3 69
AR_0			41. 52	15. 97	51. 22	54. 13

表 5 低浓度 ①对女工妊娠结局的影响

组别	妊娠 次数	足月产	过期产	早产	自然 流产	死胎 死产	低体 重儿	
观察组	332	256(77.11)	15(4 52)	29(8 73)	32(9.64)	7(2.11)	27(8. 13)	
对照组	308	272(88.31)	9(2. 92)	11(3 57)	16(5.20)	3(0.97)	12(3.90)	
χ ² 值		13. 89	1. 13	7. 27	4 55	0.70	5. 01	
P值		< 0 01	> 0 05	< 0. 01	< 0.05	>0.05	< 0.05	
RR			1. 55	2. 44	1.85	2 18	2. 08	
95% CI			0 69~3 48	1.28~4.67	1 05 ~3 26	0 35~13 53	3 1 10~3 95	
AR_{0}			35. 48	59. 02	45. 95	54. 13	51 92	

3 讨论

低浓度 CO一般是指环境空气中 CO浓度低于国家最高容许浓度。低浓度 CO对女工生殖健康的影响目前认识尚不一致 $^{[1]2]}$ 。本次调查发现观察组女工月经异常发生率为 48.2%,高于对照组(35.27%),两者之间的差异有统计学意义。其中观 察 组女 工 痛 经 发 生 率 为 27.97%,高于 对 照 组(18.5%),两者之间的差异有统计学意义。说明接触低浓度 CO可使女工月经异常发生率明显增高,并以痛经为著。这可能是因为缺氧引起的性激素分泌紊乱而致月经失调,而子宫肌组织缺氧缺血对自主疼痛神经纤维的刺激则可能是痛经发

生的主要原因[3]。

随着年龄的增长,观察组和对照组女工月经异常发生率均有增高的趋势,其中对照组上升趋势明显,年龄组之间的差异有统计学意义。而观察组这种趋势趋于平坦,起点明显增高,年龄组之间的差异无统计学意义。说明低浓度 CO对月经功能的影响在早期即可以表现出来。同年龄组比较,观察组 40岁以下年龄组月经异常发生率明显高于对照组,而 > 40岁年龄组之间的差异无统计学意义。说明低浓度 CO对月经功能的影响在年轻女工中表现得尤为明显。年轻女工正处于生育的高峰期,重点加强该年龄段女工的保护措施,适当减少接触时间,对减少月经异常发生率,提高生育质量具有重要的意义。

HbCO不但使母体血氧浓度下降,还可通过胎盘进入胎儿体内,导致胎儿低氧血症,阻滞胎儿发育,引起一系列相应的临床症状。本次调查发现,观察组女工妊高症、先兆流产、早产、自然流产、低体重儿的发生率高于对照组,且差异有统计学意义。

参考文献:

- [1] 程子权, 尤载辉, 吕菊根. 低浓度一氧化碳对工人健康的影响 [1]. 工业卫生与职业病, 1995, 21 (4): 215-219.
- [2] 袁忠孝. 接触低浓度一氧化碳对女工生殖机能影响的初步调查 [J. 劳动医学, 1997 14 (1); 35-36
- [3] 乐杰. 妇产科学 [M]. 4版. 北京: 人民卫生出版社, 1999, 340-341

机车乘务员听力损伤的调查

Investigation on hearing in pairment in locomotive conductors

孙庆华, 刘毅, 张业伟 SUN Qing hua, LTU Yi, ZHANG Yewei

(济南铁路疾病预防控制所青岛分所, 山东 青岛 266012)

摘要:对 1526名机车乘务员进行纯音测听检查,并与 182名非噪声作业人员进行对照。机车乘务员听力损失检出率 43.12%,听力损伤检出率 2.36%,听力损失检出率随着工龄的增加而上升。

关键词: 噪声; 听力损伤; 机车乘务员 中图分类号: TB53 文献标识码: B 文章编号: 1002-221 X(2008) 06-0385-02

噪声已经成为铁路机车乘务员常见的职业危害因素。 为了解机车乘务员听力损伤状况。我们对济南铁路局青岛及淄

收稿日期: 2008-06-13 修回日期: 2008-09-08

作者简介: 孙庆华 (1962—),女,副主任医师,主要 从事职业 健 事监护及慢性病院治 博地区的机车乘务员进行听力损伤调查, 结果报告如下。

- 1 对象与方法
- 1. 1 对象

本次参与调查的铁路机车乘务员分别来自青岛、淄博两个地区,共 1570人,剔除非噪声性听觉疾患、资料不完整及已经调离机车乘务员岗位 1年以上者 44人,以 1526名男性机车乘务员为噪声组,年龄 19~59岁,平均(37.3 \pm 7.6)岁,工龄 1~42年,平均(18.7 \pm 7.8)年,对照组为本局非噪声作业男性后勤人员 182名,年龄 19~57岁,平均(38.3 \pm 8.8)岁,工龄 1~40年,平均(19.2 \pm 10.1)年。两组年龄、工龄差异无统计学意义(\pm 1.460 0.605 \pm 0.05)。1.2 方法

治。 采用丹麦 AD226型听力计,在本底噪声小于 30 dB (A) China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

环境下,分别对左右耳 $500 \sim 6~000~H$ 的 6 个频段进行纯音气导听阈测定。调查对象需脱离噪声作业环境 12~h以上。对纯音测听结果按 GBZ49-~2002《职业性听力损伤诊断标准》进行年龄修正及分级诊断。

1.3 统计方法

用 Microsoft Excel 2003 建立数据库,采用 $SPSS10_0$ 0统计分析软件进行数据的 χ^2 及 检验分析。

2 结果

2.1 噪声组与对照组听力损失 (伤)情况比较

机车乘务员听力损失检出率 43.12%,以 I ~III级听力损失为主,分别占听力损失总数的 55.02%、35.26%、8.36%;而 IV、 V 级听力损失仅占听力损失总数的 0.61%、0.76%。听力损伤检出率 2.36%,以轻度损伤为主,占听力损伤总数的 91.67%,而中度听力损伤仅占 8.33%,无重度听力损伤及噪声聋。工龄 10~年、 20~年的机车乘务员听力损失人数分别占听力损失总数的 41.4%、42.86%,而工龄 1~年、30~

年的机车乘务员听力损失人数仅占听力损失总数的 6.84%、8.81%; 工龄 10~年、 20~年的机车乘务员听力损伤人数分别占听力损伤总数的 25.00%、 50~00%,而工龄 1~年、 30~年的机车乘务员听力损伤总数的 8.33%、16.67%。对照组听力损失检出率 24.18%(44/182),其中 I级听力损失占 70.46%(31/44),II级听力损失占 27.27%(12/44),III级听力损失占 2.27%(1/44),听力损伤检出率 1.10%(2/182),均为轻度听力损伤。听力损失检出率噪声组明显高于对照组,差异有统计学意义($\chi^2=24.10$ P<0.01),听力损伤检出率两组差异无统计学意义($\chi^2=0.678$ P>0.05)。

2.2 听力损失 (伤)与工龄的关系

机车乘务员听力损失检出率呈现随工龄的增加而逐渐上升的趋势,以 20~年组听力损失检出率最高,各工龄组检出率差异有统计学意义 ($\chi^2 = 35.56$ P< 0.01),听力损伤检出率各工龄组间差异无统计学意义 ($\chi^2 = 6.85$ P> 0.05)。见表 1。

表 1 个问上时机牛来务贝听刀顶头、顶伪位出情况	CC牧
--------------------------	-----

工龄	平松 1 粉	听力损失											
(年)	受检人数 —	I	II	III	IV	V	合计	检出率 (%)	轻度	中度	重度	合计	检出率 (%)
1 ~	180	30	12	2	1	0	45	25. 00	3	0	0	3	1. 67
10~	642	168	84	19	0	2	273	42. 52	9	0	0	9	1. 40
20~	563	136	111	30	2	3	282	50. 09	15	3	0	18	2. 66
30~	141	28	25	4	1	0	58	41. 13	6	6	0	6	4. 26
合计	1526	362	232	55	4	5	658	43. 12	33	3	0	36	2. 16

3 讨论

职业性听力损伤是人们在工作过程中,由于长期接触噪声而发生的一种进行性的感音性听觉损失。高频听觉迟钝是噪声性耳聋的早期征兆。因为基底膜传感低频的毛细胞比传感高频的多,这可能是高频听力比低频听力损伤重的形态学基础^[1]。本次调查发现机车乘务员听力损失检出率为43.12%,明显高于对照组;而听力损伤检出率仅为2.36%,与对照组差异无统计学意义。表明机车乘务员听力损伤主要表现为高频听力损伤,而且多为轻、中度听力损伤,无重度听力损伤,符合职业性听力损伤特征。

听力损失发生率与工龄密切相关。本次调查显示,随着接噪工龄的增加,机车乘务员听力损失检出率明显增高,此特征与国内其他的报道基本相同^[23]。工龄在 10~年段检出率激增,20~年段达到最高峰,30~年段听力损失检出率有下降趋势。分析其原因,(1)一般情况下接触噪声开始 10年听力损伤进展快,以后逐渐缓慢^[4];(2)可能与噪声习服现象有关,有动物实验表明^[3],噪声习服暴露可以对其后强噪声

损伤暴露引起的听力损失产生 13 ^(B)的保护作用; (3) 随着接噪工龄增加, 工人的自我防护意识有所提高。所以, 提高劳动者的自我保护意识, 定期开展职业健康体检, 及早采取有效的预防和治疗措施, 改进工作环境等, 可以有效减少噪声危害, 保护机车乘务员的健康, 确保铁路运输安全。参考文献:

- [1] 王簃兰,顾学箕. 现代劳动卫生学 [M. 北京: 人民卫生出版 社, 1994, 409-416.
- [2] 夏钰, 王蓀, 李琰, 等. 乌铁路局机车乘务员 噪声性听力损伤调查 [J. 铁道劳动安全卫生与环保, 2006 33 (6): 293-295.
- [3] 师建成, 尹红华, 王新纯, 等. 济南铁路局噪声作业人员听力损伤情况调查 [.]. 预防医学论坛, 2007, 9 (13): 785-787.
- [4] 顾学箕, 王簃兰. 劳动卫生学 [M. 北京: 人民卫生出版社, 1984, 156-159.
- [5] 左红艳、吴铭权、崔博、等、噪声习服听觉损伤保护作用 [J]. 中国公共卫生, 2006 22 (1): 64-65.

(上接第 353页)

- [4] Mijusheva E. Baranyi M. Kittel A. et al. Increased sensitivity of striatal dopamine release to H_2 Q_2 upon chronic rotenone treatment [1]. Free Radic Biol Med. 2005. 39 (1): 133-142.
- [5] Cecile V Catherine L Claude K Selective patterns of expression of G protein during in vitro development of hypothalamic neurons [J]. J Neurochem, 1994 63 (6): 2231-2239.
- godednocytes in the CNS J. Brain Res Rev 2000 32(1): 29-44
- [7] Duval N. Gomes D. Calaora V. et al. Cell coupling and CX43 ex.

 pression in embryonic mouse neural progenitor cells [J. J Cell Sci. 2002 115 (16): 3241-3251.
- [8] Zundorf G. Kahlert S. Reiser G. Gap-junction blocker carbenoxolone differentially enhances NMDA induced cell death in hippoal neurons and astrocytes in co-culture [J. J. Neuro Chem. 2007, 102 (2).

^[6] Nagy LIRash J.E. Comexins and gap junctions of astrocytes and oli 21994-2017 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net