。卫生评价。

有毒物质风险分级方法及在职业病危害预评价项目中的应用

Risk classification of toxic substances and its application in pre-assessment on occupational hazards

吕琳 LV Lin

(北京市疾病预防控制中心, 北京 100020)

摘要: 借鉴有害 化学 物职业 接触 半定量风险分级方法及 有关研究结果, 结合我国有关标准及管理规定, 将有毒物质 职业接触风险分级方法在某新建项目职业病危害预评价中加 以应用。此方法尤其适用于无类比现场的预评价项目。

关键词: 职业病危害评价: 风险分级: 定量评价 中图分类号: R134.1 文献标识码: B 文章编号: 1002-221X(2010)03-0226-04

《建设项目职业病危害评价规范》[1]提出的建设项目职业病 危害预评价方法为类比法、检查表法和定量分级法。其中定量分 级法主要指应用我国 20世纪 80年代颁布的生产性粉尘、职业性 接触毒物、噪声、高温等作业危害程度分级标准。自 2002年起 我国职业卫生标准中职业接触限值指标体系已由短时间接触容许 浓度 (PC-SIEL) 和 8 h时间加权平均容许浓度 (PC-TWA) 代 替原有的最高容许浓度(MAC),上述分级标准所依托的标准体 系已不符合标准规定。另外,定量分级法必须有类比项目职业病 危害因素浓度 (或强度) 数据,这些限制使得定量分级法未能在 建设项目职业病危害评价过程中得到广泛应用。国外自 20世纪 80年代开始风险评价与管理的研究[2],不同国家采用的风险评价 与管理模式的基本步骤各有不同,但涵盖的内容基本相同。本文 借鉴有害化学品职业接触半定量分析方法[3]及有关研究结果 结 合我国有关标准及管理规定, 综合考虑了职业病危害因素的理化 性质、毒理学特征、潜在危险性、接触人数及时间、使用量、职 业病危害防护措施,将有毒物质职业接触风险分级方法在某新建 项目职业病危害预评价中加以应用。

1 对象与方法

1.1 对象

某中外合资企业新建反渗透膜生产项目。其中制膜工艺可 能存在的主要职业病危害有二甲基甲酰胺、间苯二胺、乙二胺、 己内酰胺、硫酸、丙酮、异丙醇、氢氧化钠、戊二醛、均三苯甲酰氯 等。生产车间实行四班三运转配备,8 h工作制。

1.2 方法

首先对建设项目进行工程分析、职业病危害因素识别分 析和职业病危害防护措施分析,主要采用有害化学品职业接 触风险矩阵半定量分析方法, 再从皮肤接触 吸收的角度单独 进行半定量分析。

1.21 有毒物质吸入风险定性及半定量评价 对该项目生产 过程可能产生的各种 有毒物质, 根据其固有的毒性、刺激性、 腐蚀性、致癌性 「依据国际癌症中心 (IARC) 评定和 ACGIH 给出的有毒物质致癌级别[4] 等毒理学资料,结合我国制定 的《高毒物品目录》等标准,将其可能造成的危害程度分成 不同等级[5~7], 最终取各项判定标准所得结果中最大值, 确 定危害等级 出 见表 1、表 2

表 1 有害物质危害划分原则之一

危害等级	(HR)	危害分类的描述
1		不确定的健康危害影响及未归类的有毒或有害物质。 ACGIH As 级致癌物;IARC-4 未按有毒或有害分类
2		对皮肤、眼睛、黏膜的可逆的结果或并未造成严重的健康损害; ACGH A4级致癌物; ARC-3, 皮肤过敏和刺激物质
3		可能为人类或动物致癌物或致突变物 但尚无充足证据; $ACG H A3$ 级致癌物; $IARC 2B$ 腐蚀性物质 ($PH 3 \sim 5$ 或 $9 \sim 11$), 呼吸性敏感物质, 有害化学物质
4		基于动物研究的很可能人类致癌物,致突变物或致畸物, $ACG H A2$ 级致癌物, $IARC_2A$ 高腐蚀性物质 ($PH 0\sim 2$ 或 $11.5\sim 14$); 有毒化学物质
5		已知人类致癌物、致突变物或致畸物;ACGH AI 级致癌物,ARC I 高毒化学物质 例入我国高毒物品目录)

注: ACG I 美国政府工业卫生学者协会。 A1 为确定人类致癌 物, A2为可疑人类致癌物, A3为对动物致癌, A4为未分类的人类致 癌物, A5尚不能确定为人类致癌物。 ARC-1 为人类致癌物, ARC-2A为可疑人类致癌物, IARC-2B为可能人类致癌物。

表 2 依急性毒性划分有毒物质危害等级

在中 然個	鼠经口吸收	鼠或兔经皮吸收	鼠经吸入吸收	鼠经吸入吸收
危害等级	LD_{50}	LD_{50}	LC ₅₀	(气溶胶和微粒)
(HR)	(mg/kg)	(mg/kg)	(mg/L° 4 h)	LC_{50} (mg/L ° 4 h)
2	> 2 000	> 2 000	>20	>5
3	200 << 2000	400 ≪ 2 000	2 0~ ≤ 20	1 ~ 5
4	25 ~ 200	50 << 400	0. 5 ~< 2. 0	0. 25 << 1
5	≤ 25	≤ 50	≤ 0.5	≤ 0. 25

再根据有毒物质理化性质、接触方式、潜在危险性、接 触人数、接触时间、使用量、职业病危害防护措施等资料, 进行接触等级 (ER)的评价。根据有毒物质蒸气压力和空气 动力学直径、嗅阈 (OT) 与我国职业接触限值 PC-TWA之比 (OT/PC-TWA)、拟采取的卫生工程防护措施、每周累计接触 时间、接触人数、暴露量等参数确定接触指数 (El), 接触因 素的指数划分见表 3 其中职业危害控制措施在预评价阶段可 7 China Academic Journal Electronic Publishing House. All rights reserved

收稿日期: 2010-01-15

作者简介: 吕琳 (1963-), 女, 副研究员, 硕士, 主要从事职

依据可行性研究报告中提出的拟采取防护措施进行划分。接触人数的划分借鉴《职业病危害事故调查处理办法》的划分原则。建议以单独的工艺流程或工艺操作为单位进行分析,

本文即以制膜工艺为例。如我国无职业接触限值,可参考美国 ACGH阈限值 TLV-TWA 如没有 TWA接触限值,则以最高容许浓度 PCMAC计。

表 3 接触因素的指数划分表

	接触因素			接触指数 (EI)		
	按赋凶系	1	2	3	4	5
EĮ	蒸汽压力或颗粒 的 空 气 动 力 学 直径	< 0.1 mm Hg粗糙的、块状或潮湿的物料	0. 1~1 ^{mm} H ^g 粗糙 并且干燥的物料	1~10 ^{mm} H ^g 干燥 并且颗粒直径> 100 ^{μ m}	10~100 ^{mm} H ^g 颗 粒直径介于 10~ 100 ^{μm}	>100 mm H 经干燥且精 细的粉状物料直径< 10 ^{μ m}
$\mathrm{E}\mathrm{I}_{2}$	OT/PC-TWA比值	< 0. 1	0. 1 ~ 0. 5	0. 5 ~ 1	1~2	> 2
Eļ	职业病危害控制 措施	设备密闭或合理的 局部排风措施	全面通风。控制效 果较好	适当的控制,生产 工艺布局等建筑适 应性较差,预计有 害物质浓度一般	控制不当或无控制 措施,预计有害物 质浓度一般	控制不当或无控制措施,预计有害物质浓度较高
ΕĮ	每周使用量 (k ^g 或 ^L)	几乎可以忽略的使 用量(<1)	小用量(1~10)	中等用量 (10~100)	大用量(100~1 000)	大用量 (>1 000)
ΕĮ	每周累计接触时 间 (h)	≤8	8~16	16 ~24	24~32	32~40
EŁ	每班操作人数	€ 5	6~9	10 ~49	50~99	≥ 100

接触等级 (ER)按下式确定:

 $ER=[EI\times EI\times...\times EI]^{1/n}$, n为使用的接触因素个数。

最后通过公式 R isk= $\sqrt{HR \times ER}$ 计算有毒物质风险级别 别 $^{[3]}$,以四舍五入将风险等级取为整数。将风险级别划分为可忽略风险、低风险、中等风险、高风险、极高风险 5 个等级。

1.22 皮肤接触 吸收风险的定性评价 皮肤接触风险的评价要考虑健康危害和暴露水平两个因素。健康危害是指物质被皮肤接触或吸收后产生的危害,而暴露水平是指实际发生重大暴露的可能性。参考化学品物料安全数据表的健康影响部分,参照表 4为每个物质的皮肤危害进行分级。参照表 5对皮肤接触的潜在暴露进行分级,在分级时不考虑个人防护用品的使用^[8]。

表 4 皮肤接触/吸收的危害分级划分原则

危害等级 HR _{Skin}	危害分类的描述
1	无皮肤危害,小的短暂的影响,可能引起皮肤干燥
2	可能对皮肤有刺激。可能造成皮炎
3	原料会引起皮肤发炎、致敏、腐蚀(酸、碱、镍) 包括 ACGH和 GBZ2 1— 2007上标有"敏"、"SEN"标志的物质;包括任何标有 EU风险标志 R21、R34、R35、R38或 R43的物质
4	原料有毒能被皮肤吸收(汞、氟化氢、四氯化碳 》。包括 $ACGIF$ 和 GBZ_2 I— 2007 上标有"皮肤"标志的物质,包括任何标有 EU 风险标志 R_2 4或 R_2 7 标志的物质

表 5 皮肤接触/吸收的暴露水平分级划分原则

18	3 及1人1女性/火火印象路小十刀纹划刀标则
暴露分级 ER _{Skin}	暴露水平的描述
1	无皮肤接触
2	可能有短时的皮肤接触
3	有皮肤接触可能性,并且可能有重复和长时间的接触
4	确定有皮肤接触,或本身就是作业的一部分

最后通过公式 R i k k i k k i k $^{$

表 6 皮肤接触/吸收风险分级

接触《吸收	
风险水平	风险水平的描述
$Ri^s\!k(Ski^n)$	
<4	低风险: 无需佩戴个人防护用品 (PPE)
4~9	中等风险,建议使用防渗透手套,但不是必须的;一般情况下无需采取工程控制或化学品替代等措施
≥9	高风险:使用 PPE作为临时的控制措施,但长期依赖 PPE是不被推荐的,除非工程控制或管理控制措施不可行。通常这种 PPE是防渗透手套,但要视材料和使用情况而定,也有可能需要面罩、围裙和靴子

2 结果

2.1 职业病危害因素识别

通过工程分析,识别该建设项目建成投产后,其主要生产工艺制膜过程存在的主要有毒物质为二甲基甲酰胺、间苯二胺、乙二胺、己内酰胺、硫酸、丙酮、异丙醇、氢氧化钠、戊二醛等职业病危害因素。每班接触人数 5人。其存在岗位及接触情况见表 7。

表 7 有毒物质存在岗位及接触情况

职业病危害 因素	可能存在的 工序或岗位	作业方式	每班累计接 触时间 (h)
二甲基甲酰胺	原液、涂布、 PS凝固、 PS清洗、性能 测试、 DMF回收	配 料、巡检 及 辅助操作	7
间苯二胺	原液、涂胺、去除过 剩的胺、性能测试	配 料、巡检 及 辅助操作	7
乙二胺	原液	配 料、巡检 及 辅助操作	0. 5
己内酰胺	原液	配 料、巡检 及 辅助操作	0. 5

续表 7

职业病危害 因素	可能存在的 工序或岗位	作业方式	每班累计接 触时间(h)
硫酸	原液、去除过剩的 胺、抗污染层加工	配料、巡检 及辅 助操作	7
丙酮	涂布	清洁擦拭	0. 5
异丙醇	抗污染层加工	巡检及辅助操作	2
氢氧化钠	性能测试、中和	巡检及辅助操作	7
戊二醛	抗污染层加工	巡检及辅助操作	2

2.2 有毒物质危害等级确定结果

根据企业提供的化学品安全技术说明书 (MSDS) 确定该项目涉及的有毒物质的危害等级,结果见表 8

2.3 有毒物质接触等级确定结果

该项目涉及的有毒物质接触等级由接触指数 $E_{I}\sim E_{I}$ 计算得出,结果见表 g

表 8 有毒物质危害划分等级

		急性毒性		2 m	
有毒物质	鼠经口吸收 ID ₅₀ (mg/kg)	鼠或兔经皮 吸收 ID ₅₀ (mg/kg)	吸入吸收 IC ₅₀ (mg/L°4 h)	致癌性、腐 蚀性及其他	危害 等级 (HR)
二甲基甲 酰胺	4 000	4 720	9 4	ARC-3 A4	3
间苯二胺	650	5 000	3 2	A4 1H=92	3
乙二胺	76	730(µ g)	98	A4、强碱性、 可致哮喘	5
己内酰胺	1 115	1 438	0 3(2 h)	IARC-4, A5	4
硫酸	2 140	_	0 3(2 h)	Gk A2 PH<1	5
丙酮	5 800	20 000	44. 0	A4	2
异丙醇	5 045	12 800	39. 3 (8 h)	IAR C-3	2
氢氧化钠	40	_	_	强腐蚀和刺激	4
戊二醛	820	640	_	A4 PH>3	3

表 9 制膜车间有毒物质接触等级

			接触因素 (EI)				
有毒物质名称	蒸气压力(mm H8)或 颗粒的空气动力学直径	OT/PC-TWA 比值	职业病危害控制措施	每周使用量 * (k ^g 或 L)	每周累计接 触时间 (h)	每班操 作人数	ER等级
二甲基甲酰胺	3.7 (25°C)	300	局部排风	1 266	35	5	2. 69
间苯二胺	_	_	局部排风	650	35	5	2. 09
乙二胺	10.7 (20°C)	_	原液间全新风空调系统	13. 3	2. 5	5	1. 89
己内酰胺	_	0. 29	原液间全新风空调系统	111. 7	2. 5	5	1. 78
硫酸	$<$ 0.000 75 (20 $^{\circ}$ C)	0. 4	原液间全新风空调系统	5	35	5	1. 85
丙酮	180 (20℃)	0. 103	适当的控制,制膜间空调 系统全面通风	_	2. 5	5	1. 97
异丙醇	44	1. 4	制膜间空调系统全面通风	370	10. 5	5	2. 24
氢氧化钠	1. 0 (739°C)	_	制膜间空调系统全面通风	727	32. 5	5	2. 40
戊二醛	17 (20 [°] C)	_	制膜间空调系统全面通风	18. 3	10. 5	5	2. 17

注: *按年使用 300 d 每周 5 d计。

2.4 风险等级及评估结果

通过公式计算风险级别,依据风险级别判别有毒物质可导致职业危害的风险等级,见表 10

表 10 风险等级评估结果

有毒物质	风险级别	风险等级
二甲基甲酰胺	2. 84	3 中等风险
间苯二胺	2. 50	3 中等风险
乙二胺	3. 07	3 中等风险
己内酰胺	2. 67	3 中等风险
硫酸	3. 04	3 中等风险
丙酮	1. 98	2 低风险
异丙醇	2. 12	2 低风险
氢氧化钠	3. 10	3 中等风险
戊二醛	2. 55	3 中等风险

2.5 皮肤接触 吸收风险等级评价结果

该项目涉及的有毒物质皮肤接触 吸收风险水平见表 11

2.6 风险控制对策

根据以上风险分析结果、该项目氢氧化钠、乙二胺、硫酸、二甲基甲酰胺、己内酰胺、戊二醛和间苯二胺发生职业

表 11 皮肤接触 吸收风险等级评价结果

有毒物质	皮肤接触 吸收的	皮肤接触 吸收的	皮肤	扶接触 吸收
日母初灰	危害分级	暴露水平分级	J	风险等级
二甲基甲酰胺	4	2	8	中等风险
间苯二胺	1	2	2	低风险
乙二胺	4	2	8	中等风险
己内酰胺	1	2	2	低风险
硫酸	3	2	6	中等风险
丙酮	1	4	4	中等风险
异丙醇	1	2	2	低风险
氢氧化钠	3	2	6	中等风险
戊二醛	3	2	6	中等风险

危害的风险为中等风险水平,异丙醇、丙酮为低风险水平。 类比现场职业病危害因素检测结果显示二甲基甲酰胺、丙酮 等有毒物质浓度低于职业接触限值,与风险评估等级结果相 互印证。可得出该项目职业危害为中等风险水平,属于职业 病危害一般的项目。

氢氧化钠、乙二胺和硫酸发生职业危害的风险在中等风险水平,主要原因是物质自身危害等级较高造成的,可通过

对作业人员加强职业病防治知识的教育培训,加强个体防护,

完善酸碱工作地点的喷淋洗眼器的设置,进一步控制风险并 降低风险水平。 二甲基甲酰胺、间苯二胺等职业病危害的风 险在中等风险水平, 其拟采取的职业危害控制措施到位, 但 也不能忽视其造成职业病危害的可能,应注意加强防护设施 的维护与管理,加强日常监测以控制风险。

皮肤接触 /吸收风险等级评价结果可见该项目二甲基甲酰 胺、乙二胺、硫酸、氢氧化钠、戊二醛、丙酮皮肤接触 吸收 风险为中等风险水平,建议使用防渗透手套,间苯二胺、己 内酰胺、异丙醇皮肤接触 吸收风险为低风险水平。

- 3 讨论
- 3.1 半定量风险分析方法考虑有毒物质毒性、刺激性、腐蚀 性、致癌性等特性,确定危害级别 HR。接触等级评价综合考 虑有毒物质发散性、潜在危险性、可能的暴露量、接触时间、 接触人数、工程技术措施等因素,具有一定的科学性和代表 性。通过类比现场检测数据的验证,其符合性较好。此方法 有实际应用意义,尤其适用于无类比现场的预评价项目。
- 3.2 如可比性较好的类比现场职业病危害因素检测数据较丰 富,可将有毒物质浓度与职业接触限值之比作为一个新的接 触指数,可按接触浓度< 1% OEL\$ 1% ~ 10% OEL\$ 10% ~ 50% OEL\$ 50% ~ 100% OEL\$ > 100% OEL\$进行接触分级。 检测数据结果应为个体接触的 8 h时间加权平均浓度 (只有最 高容许浓度限值时例外)。
- 3.3 影响职业接触评价结果的暴露因素很多,目前考虑的6

个因素是按照相同的权重考虑的, 今后工作中可探讨通过专 家论证,对各种因素赋予相应权重。

3.4 评价中需要注意对易经皮肤吸收的有毒物质,单纯空气 采样不足以准确定量接触程度,必须采取措施预防皮肤的接 触和吸收。

参考文献:

- [1] 卫生部卫生法制与监督司. 中华人民共和国职业卫生法规汇编 《建设项目职业病危害评价规范》[M]. 北京: 中国人口出版社, 2002: 240-259.
- [2] EPA/630/R98/003 September 1986 Guildelines for Mutagenicity Risk Assessment [Z]. Federal Register 1986 51: 34006-34012
- [3] A Semi-quantitative Method to Assess Occupational Exposure to Ham ful Chem icals Ministry of Manpower Occupational Safety and Health Divi sion Singapore [Z]. 2005.
- [4] 张敏, 王丹, 杜燮祎, 等. ACGIH有关化学因素的 TLVs []1. 国外医学卫生学分册, 2007 34(1), 4-24.
- [5] 黄德寅,薄亚莉,管树利、等. 化学物质职业暴露健康风险分级方法 的研究及应用[]. 中国工业医学杂志, 2009 22 (1): 69-72
- [6] 黄德寅,陈会祥,管树利,等. 工作场所化学物质职业暴露健康 风险分级方法的应用 [A]. Atlantis Press, 2008, 483-488.
- [7] 王延让,刘静 张鸿 等. 风险评估在化工行业职业危害评价中的应 用 []. 中华劳动卫生职业病杂志, 2009 27 (2): 122-125
- [8] 杜欢永. 职业卫生定性风险评价方法的研究 [1]. 中国安全生产 科学技术, 2009, 5 (4): 70-75.

某公司预还原氨合成催化剂扩产项目职业病危害控制效果评价

Assessment of control effect on occupational hazards in an output expansion project of catalyzer for synthetic ammonia production

> 王健, 安刚, 郑洪岩, 王姣 WANG Jan AN Gang ZHENG Hong yan WANG Jiao

(盘锦市疾病预防控制中心, 辽宁 盘锦 124010)

摘要:通过职业卫生现场调查、职业病危害因素检测、 职业健康检查等方法,对400 好车预还原氨合成催化剂扩产项 目的职业病危害因素进行分析,评价其职业病危害防护设施 的控制效果。该扩产项目 在生产过程中产生的职业病危害因 素主要有其他粉尘、氨、镍及其无机化合物、噪声、工频电 场。现场检测结果显示各岗位的职业病危害因素浓度 (或强 度)均低于国家现行标准。该扩产项目职业病危害控制措施 防护效果达到国家标准要求。

关键词: 氨合成: 催化剂: 职业病危害: 控制效果评价 中图分类号。 R134.1 文献标识码. B 文章编号: 1002-221X(2010)03-0229-02

某公司主要生产化学及石油化工催化剂产品。为了适应

市场需求,提高工艺水平和扩大产能,该公司经批准投资 1 402万元, 扩建一套年产 400 氨合成催化剂还原装置。受企 业委托,对该项目进行职业病危害控制效果评价。

- 1 内容与方法
- 1. 1 评价内容

总体布局、生产工艺及设备布局、建筑卫生学、职业病 危害因素及分布、对劳动者健康的影响程度、职业病危害防 护设施及效果、辅助用室、个人使用的职业病防护用品、职 业健康监护及职业卫生管理措施及落实情况。

1. 2 评价方法

通过现场调查、职业卫生检测、职业健康检查的结果等 方法收集数据和资料,对试运行期间作业人员的职业病危害 因素接触水平及职业健康影响进行评价。

1.3 评价依据

以《中华人民共和国职业病防治法》等法律法规、《建 害评价. <mark>设项目职业病危害评价规范》等标准规范及项目的可研报告</mark> ?1994-2017 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

收稿日期: 2010-03-21

作者简介: 王健 (1975-) 男, 主管医师, 主要从事职业病危