•调查报告•

某大型钢铁企业一氧化碳分布及浓度分析

Survey and analysis on distribution and concentration of carbon monoxide in a large iron and steel enterprise

张锋,赵亮亮,朱勇,于政民,朱宝立

(江苏省疾病预防控制中心,江苏南京 210009)

摘要:连续4年每月对某大型炼钢企业作业点一氧化碳浓度进行现场检测,分析一氧化碳浓度变化规律,提出钢铁企业一氧化碳浓度的关键控制点和控制措施,以预防作业人员一氧化碳中毒,保护工人健康。

关键词:钢铁企业;一氧化碳;浓度变化;分布中图分类号:R134.4 文献标识码:B 文章编号:1002-221X(2014)04-0294-02 **DOI**:10.13631/j.cnki.zggyyx.2014.04.023

钢铁行业存在的职业病危害因素种类繁多,以 CO 最常见、接触人数最多。本文综合现场调查及 4 年内对某钢铁企业的现场 CO 检测结果,确定钢铁企业可能存在 CO 的生产环节与作业点,分析工作场所 CO 浓度的变化规律,为职业病危害的有效防护提供依据。

1 对象与方法

1.1 对象

江苏某大型钢铁企业各分厂(包括炼铁、炼钢、冷轧、热轧、能环公司、能源部等二级单位)作业点空气中 CO 浓度。

1.2 方法

1.2.1 职业卫生调查 了解钢铁生产工艺流程、使用的原辅材料、设备、防护措施等,在此基础上确定可能产生 CO 的作业点。

1. 2. 2 CO 浓度检测 根据 GBZ/T160. 28—2004 的要求,采用不分光红外气体分析仪对工作场所可能存在 CO 点每月测量一次,2009—2012 年连续监测 4 年。记录测量数据,计算 TWA 及 STEL 值。

1.2.3 数据处理 使用 Excel 表绘制 CO 浓度变化曲线,并进行统计学分析。

2 结果

2.1 基本情况

本次调查包括该钢铁企业的能环公司(加压站)、能源部(自备电厂)、烧结、高炉、炼钢、炼焦、热轧共7个分厂。主要工艺流程:生铁矿经过烧结后形成块状或球状固体进入高炉,通入高炉煤气、加入焦炭,将烧结后的铁矿加热形成铁水;铁水通过脱碳、脱磷、加合金等步骤形成钢水,并浇

收稿日期: 2013-06-04; 修回日期: 2013-08-20

基金项目: 江苏省预防医学会项目 (编号: Y2012087),中华预防医学会项目 (编号: 20101002)

作者简介: 张锋 (1982—),男,主管技师,硕士,从事职业卫生检测。

通讯作者: 朱宝立 主任医师 硕士生导师 E-mail: zhubl@jscdc. cn。

铸成钢坯,通过轧钢形成不同型号的产品。

2.2 CO产生环节

CO 产生的主要环节包括: 在炼铁过程中通入高炉煤气 (CO) 作为还原剂,将氧化铁还原成铁; 在炼钢过程中向铁水中吹入氧气,使其中的碳形成 CO; 炼焦过程中在隔绝空气条件下将煤加热到1000 °C 左右,通过热分解和结焦产生焦炭、焦炉煤气; 能源公司将 CO 加压通过管道送至不同的分厂作为燃料使用,因此在各加压站和使用 CO 作为燃料的分厂也可能接触 CO。高炉分厂炉前工、炼焦分厂炼焦工、炼钢分厂的连铸工以手动操作、定点作业为主,其余工人以自动操作、巡检作业为主,平均每天工作 8 h。

2.3 CO 浓度各月份检测结果

2009 年至 2012 年各岗位 1 ~ 12 月每月 CO 浓度检测结果见表 1。

2.4 可能存在高浓度 CO 作业位点识别

从检测结果来看,该钢铁企业 CO 浓度较高(STEL 值 30 mg/m³)的点有能源部的加压站、煤气水封区域,高炉厂的 CO 排放区、热风炉区,炼钢厂的渣池碎化区,这些区域应作为 CO 重点监测区域,在进入这些区域时,必须确认现场 CO 浓度低于短时间接触容许溶度,并且工人应佩戴 CO 报警仪,防止 CO 意外泄露。

2.5 CO 检测合格率

2009-2012 年对该钢铁企业 7 个分厂 108 个可能存在 CO 的作业点进行检测,每月每点检测一次,每次检测记录 3 个平行数据,共获得13 428份数据。各分厂 CO 检测样品数及检测合格率见表 2。

3 讨论

3.1 CO 浓度变化规律

从表 1 可以看出,CO 平均浓度随着测量月份的不同而各异,其中能源部、高炉、炼钢分厂在 1 月份 CO 平均浓度较高,而能环公司、炼焦、烧结、热轧 4 个分厂 CO 平均浓度10 月份最高,3 月份普遍较低,CO 浓度的变化主要与企业产量及煤气用量有关。

Carolyn K 报道^[1], 2000—2005 年美国华盛顿地区职业性 CO 中毒在 1 月份和 10 月份人数最多,而 3 月份最低,此 CO 中毒人数变化规律与本文报道的 CO 浓度变化规律相似。但该公司 2009 年至 2012 年间共发生 CO 中毒 16 例,有 13 例中毒发生在 2 月份; 1992—2002 年 10 年间,该钢铁公司有 8 人次发生 CO 中毒事故,其中 2、4、5、9、10 每月 1 人,8 月份 3 人次^[2]。从中可以看出该企业 CO 中毒人数与 CO 浓度变化并没有一致的规律性,必须时刻做好防止 CO 中毒的措施。

表 1 各分厂 4 年不同月份 CO 浓度的最高值及平均值

 mg/m^3

		能源部	能环公司	烧结	2#高炉		3#高炉		炼钢		炼焦	热轧
月份		煤气加 压巡检	锅炉巡检	看火工	巡检	炉前工	高炉 巡检	炉前工	脱硫	连铸	炼焦工	轧钢工
1月	最高	45. 00	0. 90	6. 25	287. 50	36. 25	312. 50	25. 69	45. 48	20. 57	25. 00	5.00
	平均	4. 92	0.65	1.08	80. 27	4. 69	97. 30	4. 90	20. 31	5.89	1.89	0.97
2月	最高	8. 75	0.80	6. 25	73. 75	12. 95	206. 25	20.78	43. 27	17. 45	3. 75	1.30
	平均	1.76	0.65	0. 93	49.62	6.46	80. 92	4. 78	15.08	2. 14	1.35	0.67
3月	最高	0.50	0.50	2.50	13.75	5. 56	86. 25	19.46	54. 44	13.83	1.00	6. 25
	平均	0.45	0.40	0.71	9.46	1. 20	24. 36	5.46	17. 63	3.75	0.73	0.65
4月	最高	0.50	0.50	3.75	216.00	13. 79	104. 88	20. 11	49. 44	8. 24	2.50	6. 25
	平均	0.45	0.45	0.97	24. 63	2. 37	35. 23	1. 19	5. 18	0.84	1. 22	0.72
5月	最高	2. 25	0.50	1.00	111.00	27. 46	121. 25	22. 56	46. 25	9. 57	5.00	0.50
	平均	0.90	0. 33	0.65	42. 23	5. 83	41.08	2. 78	10. 29	3.49	1. 16	0.30
6月	最高	2.50	0.80	0.75	157. 13	33. 54	143. 75	25. 79	48. 75	9.46	8.75	0.50
	平均	0.89	0.65	0.65	47. 94	10. 28	49. 32	3.62	22. 12	2. 76	1.76	0. 25
7月	最高	2.50	2. 50	6. 25	166.88	47. 23	128.60	49. 36	173. 75	41. 37	10.00	2.50
	平均	0.80	0.81	1.08	23. 58	5.70	42. 54	5. 20	23.87	5.45	1. 52	0.87
8月	最高	5.00	3.75	3.75	158. 50	35. 12	67.50	24. 67	48. 36	25.65	21.75	1. 25
	平均	1.08	1.04	0.96	42. 29	5. 47	26. 15	3. 19	9. 28	5. 32	2. 42	0.72
9月	最高	2.50	0.50	7.50	156. 20	49. 58	36. 25	21.58	41. 25	19. 36	21. 25	6. 25
	平均	1.08	0.45	1. 29	45.73	7. 03	30. 27	4. 17	20. 36	2.66	2. 20	1.88
10月	最高	3.75	2.50	6. 25	150.63	50.09	13. 75	13. 15	36. 25	20.81	26. 25	3.75
	平均	0.76	1.94	3.33	31. 29	2. 29	12.68	2. 82	5. 45	1.01	3.03	1.95
11月	最高	0.75	2.50	0. 25	156. 75	47. 63	3.75	2. 36	43.75	19.38	21. 25	2.50
	平均	0.65	0.94	0. 15	35.46	3. 12	2. 15	1.35	12. 43	2.43	2.40	1. 21
12月	最高	1.00	3. 75	0.75	123.75	35. 25	3.75	3. 21	15.00	14. 25	27. 50	3.75
	平均	0.78	0.65	0.65	12. 78	3. 24	3. 07	1.43	3. 15	1.05	2. 82	1.02

表 2 各分厂 CO 检测点合格率

部门	检测数	不合格数*	合格率(%)	部门	检测数	不合格数*	合格率(%)
能源部	1296	3	99. 77	炼钢	2916	432	85. 19
能环公司	720	0	100.00	炼焦	2448	0	100.00
烧结	2304	0	100.00	热轧	1584	0	100.00
2#高炉	1008	192	80. 95	合计	13428	771	94. 26
3#高炉	1152	144	87. 50				

注: 不合格数指 CO 浓度超过 STEL 值 (30 mg/m³) 的数据。

CO 的防护措施与现场空气中 CO 浓度密切相关,该公司在炉前工、连铸工、热轧工等岗位设置局部机械通风和个人 CO 报警仪,从检测结果看这些岗位的 CO 浓度低于其他岗位,防护措施可起到较好的降低 CO 浓度作用。

CO 浓度与季节具有一定的相关性,赵宜静等^[3] 研究发现非职业性 CO 中毒与气象条件关系密切,气温、气压、风速等均可影响 CO 中毒人数。而工作场所空气中 CO 浓度主要影响因素是风速。南京地区春夏多风,且风速较大,空气中 CO 能够得到较好的扩散和稀释;而秋冬季静风较多、风速较小,空气中 CO 扩散慢,从而导致浓度增加。

3.2 CO 关键控制点

钢铁企业 CO 浓度超标较多的在高炉、炼钢分厂,尤其在高炉炼铁的冶炼工区,高炉煤气中 CO 浓度高达 30% ,轻微的泄露即可引起作业场所 CO 浓度增高; 其次在炼钢的转炉中也存在大量的 CO 气体,并且在钢渣碎化时,使用冷水浇注冷却钢渣,造成大量的焦炭不完全燃烧产生 CO。企业应特别重

视这两个分厂的 CO 防治,作为 CO 的控制关键点。

3.3 CO 防控技术

(1) 在 CO 浓度较高的地方安装 CO 浓度在线监测预警系统,实时监测 CO 浓度并且将检测数据汇总至公司安全部门,发现 CO 浓度超标,立即报警,通知现场工作人员撤离。(2) 进入 CO 浓度区域配备个人 CO 报警仪,CO 在线监测预警系统可以反映工厂整体的 CO 浓度,但由于布点的限制,某些区域可能监测不到,而个人 CO 报警仪,则可实时反映工人的实际接触值。(3) 加强通风,根据 CO 逸散的实际情况,建立自然通风、机械通风或事故通风系统,并按卫生学要求组织通风系统的设计、安装及运行,建立无毒作业环境。(4) 杜绝违章作业,开展职业卫生安全培训教育,提高职工的卫生防护知识、技能和意识,自觉遵守各项制度、规程,确保安全生产。

参考文献:

- [1] Carolyn K, David K, Stephen G, et al. Occupational carbon monoxide poisoning in Washington State, 2000—2005 [J]. Journal of Occupational and Environmental Hygiene, 2010, 7: 547-556.
- [2] 陈恩明,周芹,叶海滨,等. 某钢铁公司 1992—2002 年急性一氧化碳事故的分析与思考 [J]. 职业卫生与应急救援,2004,22 (1): 12-13.
- [3] 赵宜静,杨敏娟,胡昕冬,等,385 例非职业性一氧化碳中毒流行病学特征分析 [J]. 中华劳动卫生职业病杂志,2013,31 (4):287-288.