•卫牛评价•

某智能电表生产项目职业病危害因素识别及控制

Identification and control of occupational hazards in a smart meter production project

李铭,李万军,张高峰,马好,吕艳朋,温新欣

(济南铁路疾病预防控制中心,山东 济南 250001)

摘要:采用现场职业卫生学调查和作业场所职业病危害因素监测的方法,对某智能电表生产项目进行评价分析,其存在的主要职业病危害因素有粉尘、铅及其化合物、异丙醇、噪声、高温和工频电场,关键控制点是铅及其化合物和噪声,需完善职业病危害防护措施。

关键词: 职业卫生; 危害因素; 识别; 控制中图分类号: R135 文献标识码: B 文章编号: 1002 - 221X(2014) 06 - 0451 - 02 **DOI**: 10. 13631/j. enki. zggyyx. 2014. 06. 025

2012 年 10 月对某智能电表生产项目进行了职业病危害因素识别、检测,并为企业采取职业病预防控制措施提出可行性建议。

1 内容与方法

1.1 调查内容

生产工艺及设备、原辅材料及化学成分、职业危害因素 种类、存在岗位、作业方式,职业卫生防护设施和职业卫生 管理现状。

1.2 职业病危害因素检测方法

在正常生产状态和环境下,按照《工作场所空气中有害物质检测的采样规范》(GBZ159—2004)进行现场采样,粉尘按照《工作场所空气中粉尘测定 第1部分:总粉尘浓度》(GBZ/T192.1—2007)进行长时间采样,有毒物质按照《工作场所空气有毒物质测定 铅及其化合物》(GBZ/T160.10—2004、《工作场所空气有毒物质测定 醇类化合物》(GBZ/T160.48—2007)分别进行长时间和短时间采样,噪声测定按照《工作场所物理因素测量 第8部分:噪声》(GBZ/T189.8—2007)进行,工频电场的检测按照《工作场所物理因素测量第3部分:工频电场的检测按照《工作场所物理因素测量第3部分:工频电场》(GBZ/T189.3—2007)进行,连续采样3d。使用的采样仪器和空气收集器的性能和规格符合 GB/T17061的规定,并经计量检定合格。采样的同时进行温度、相对湿度、气压和风速等气象条件的测定。

1.3 评价方法

以《职业病危害因素分类目录》(卫法监发 [2002] 63 号) 识别职业病危害种类,以《工业企业设计卫生标准》(GBZ1—2010) 评价职业病危害防护设施及职业卫生现状,以《工作场所有害因素职业接触限值 第1部分 化学有害因

收稿日期: 2013 - 07 - 11; 修回日期: 2013 - 08 - 15 作者简介: 李铭(1968—),男,副主任医师,从事职业卫生检

作者简介: 李铭(1968—),男,副主任医师,从事职业卫生检测与评价工作。

素》(GBZ2.1—2007)和《工作场所有害因素职业接触限值第2部分物理因素》(GBZ2.2—2007)判定检测结果超标情况。 2 结果

2.1 基本情况

厂区共有员工415 人,接害人员180 人,其中女工98 人。生产主要原料是线路板、电子元件、焊锡(成分铅和锡)、焊锡膏(成分锡、铅和助焊剂)、三防漆(成分异丙醇、松香、二羧酸)等。设有备料、贴片、AOI 检测、插件、波峰焊、选择性波峰焊、补焊、超声清洗、刷三防漆、老化、初装、吹扫、总装、校验、激光打标、包装、打捆、空压机司机、电工、维修等岗位。每班日工作约8 h。

2.2 生产工艺

物料→表贴(印刷、贴片、回流焊)→检验→插装器件成型→波峰焊→手工补焊→选择性波峰焊→手工补焊→目检→刷三防漆→高温老化→初装焊→上表盒→检验→校表→验表→激光打码→包装→入库。

2.3 职业病危害因素识别与分析

根据职业卫生现场调查,本项目工作场所职业病危害因素分布见表1。

表 1 工作场所职业病危害因素分布

车间	职业病危害因素	主要存在部位					
表贴车间	铅及其化合物	贴片机、波峰焊机、选择性波峰焊机、 补焊					
	异丙醇 噪声	刷三防漆 贴片机、波峰焊机、选择性波峰焊机					
	高温	波峰焊机、选择性波峰焊机、高温老化间					
初装车间	铅及其化合物	手工焊接					
	噪声	气枪吹扫					
	其他粉尘	气枪吹扫					
包装车间	其他粉尘	激光打标机					
	激光	激光打标机					
	噪声	打捆机					
检验车间	工频电场	配电室					
办公辅助	噪声	空压机房					

2.4 职业病危害因素检测结果

各主要岗位粉尘及化学有害因素检测结果见表 2。

噪声测量结果只有装配车间初装区气枪吹扫岗位超标,检测值为 $91.7 \sim 92.7~dB$ (A),装配车间其余岗位 $72.0 \sim 82.3~dB$ (A),表贴车间各岗位 $65.0 \sim 75.9~dB$ (A),空表压机室 $79.4 \sim 82.9~dB$ (A);配电室和各配电柜工频电场检测结果均不超标,最高值为 78.32~V/m。

表 2 主要岗位粉尘及化学有害因素检测结果

 mg/m^3

有害因素	检测点/工种	$\mathrm{C}_{\mathrm{TWA}}$	\mathbf{C}_{STEL}	PC-TWA	超限 倍数	结果 判定
铅烟	选择波峰焊	0.003	0.008	0.03	3	不超标
	补焊	0.009	0.032	0.03	3	不超标
	波峰焊机	0.005	0.010	0.03	3	不超标
	初装焊	0.004	0.10	0.03	3	超标
异丙醇	刷三防漆	< 0.1	< 0.3	350	2	不超标
其他粉尘	激光打标工	0. 37	_	8	_	不超标

2.5 有害因素控制措施

- 2.5.1 防尘毒 每台激光打码机均配备1台局部通风除尘系 统,激光打码机设在侧窗位置,夏季便于自然通风除尘毒; 补焊、初装焊等各手工焊接岗位配备有1台小型排风除尘设 备和机械排风罩,但除尘设备排风口在车间内,且无滤芯 除毒。
- 2.5.2 防噪、防振 对产生振动的空压机安装时配备了减振 基础并在底座加装了隔振垫,产生噪声的空压机相对集中设 置,并为每台空压机增设了隔声罩。
- 2.5.3 工频电场的防护 厂区内变电柜、配电柜均采用金属 箱封闭,除维修外不需要人工操作。在变压器周围实行区域 控制,配电设施采取室内布置,防止无关人员进入。
- 2.5.4 防高温 波峰焊机、选择性波峰焊机、自动贴片机、 回流焊机自带隔热外壳和排风系统,高温老化房本身是隔热 材料制成。高温老化房顶部设置机械排风设施,便于通风 降温。
- 2.5.5 激光防护 激光打码岗位工人配备了防激光护目镜。

2.5.6 防护设施维护情况 企业配有设备维护人员,把防护 设施的运行纳入日常管理,保证防护设施与生产设备同时维 护、同时检修、同时运转。

2.6 机械通风罩防护参数检测

除表贴车间补焊及初装岗位罩口风速为0外,贴片机、 波峰焊机、激光打码等处测得罩口风速为 1.0~1.5 m/s,防 护设施有效。

2.7 职业健康监护情况

职业健康检查发现吹扫岗位2人听力异常,初装岗位2 人、补焊岗位3人血铅异常,余未见体检项目异常。

3 讨论

本项目主要职业病危害因素有粉尘、铅烟、异丙醇、噪 声、高温、工频电场等。关键控制点是铅及其化合物和噪声。 现场检测结果显示,噪声检测初装气枪吹扫岗位存在超标现 象,初装手工焊接触铅及其化合物的短时间检测浓度超过职 业接触限值的要求,说明防护设施不完备或防护效果较差, 应加强吹扫、初装和补焊岗位的防护。建议: (1) 开启补焊 和初装焊等手工焊接岗位设置的局部通风设备,集中排放有 害物质。为刷三防漆生产线增配局部机械通风设施,排出挥 发的有害物质。(2) 在防噪声措施方面,应将初装气枪吹扫 工段单独隔间,内墙采取吸声处理,以降低噪声对相邻工段 的影响。在噪声治理达标前,首先加强个人防护,为初装气 枪吹扫操作工人和其相邻工段工人佩备防噪声耳塞。(3) 制 定切实可行的防止职业性铅中毒危害事故的应急预案。定期 检修机械排风设施,保证排风通畅。

医疗垃圾焚烧企业职业病危害因素识别与关键控制点分析

Identification of occupational hazards and analysis on their key control points in medical waste incineration enterprises

李焕焕,盖永健,宋小和,李雪飞,曲波

(辽宁省职业病防治院,辽宁 沈阳 110005)

摘要: 分析显示, 医疗垃圾焚烧企业生产过程中存在的 职业病危害因素有粉尘、氯化氢、二氧化硫、一氧化氮、二 氧化氮、一氧化碳、二氧化碳、金属汞 (蒸气)、铅及其无机 化合物、二素英、二氧化氯、氯气、硫化氢、氢氧化钠和噪 声等,其中巡检岗位金属汞 (蒸气) 和污水处理岗位二氧化 氯超标。提示医疗垃圾焚烧企业职业病危害因素关键控制点 是除尘器出灰口和污水处理站消毒池。

关键词: 医疗垃圾焚烧; 职业病危害因素; 关键控制点 中图分类号: R135 文献标识码: B

文章编号: 1002 - 221X(2014)06 - 0452 - 03

DOI: 10. 13631/j. cnki. zggyyx. 2014. 06. 026

收稿日期: 2014-01-22; 修回日期: 2014-04-05

作者简介: 李焕焕(1980-),女,主管医师,主要从事职业卫 生评价工作。

目前,对医疗垃圾焚烧过程中的职业危害报道较少见, 本文通过识别分析医疗垃圾焚烧过程中职业病危害因素及其 关键控制点,为医疗垃圾焚烧企业职业病危害防治提供依据。

1 对象与方法

对某医疗垃圾焚烧企业生产工艺流程进行分析和调查, 找出产生职业危害因素的工艺环节和生产岗位,依据检测职 业病危害因素浓度,提出职业病危害关键控制点。

2 结果

2.1 工艺

某医疗垃圾焚烧企业为某市医疗垃圾集中处置的唯一单 位,日处理医疗垃圾能力为40 t。该企业采用了国内较成熟的 生产设备,自动化程度较高。工艺流程见图1。

2.2 职业病危害因素识别

清洗包装桶使用二氯异氢尿酸钠溶液,该物质为可溶性 盐类,低毒性,不易挥发,故不作为职业病危害因素。该企