应对苯、一氧化碳急性中毒事故,在装置区设有应急事故柜,柜内备有空气呼吸器、全面罩防毒面具、应急工具以及急救药箱等,可及时获取。(3) 反应装置区和固体顺酐包装区等重点场所共设有 6 个冲洗装置,其服务半径小于 15 m,保证在 10 s 内得到及时冲洗。

2.8 工作场所职业病危害因素检测

样品采集按《工作场所空气中有害物质监测的采样规范》(GBZ159—2004) 执行,检测方法按《工作场所空气中有毒物质测定》(GBZ160—2004) 及《工作场所物理因素测量第8部分:噪声》(GBZ/T189.8—2007) 的要求执行。每天上下午各采样1次,连续采样3d。

2.8.1 职业病危害因素接触状况调查 该项目设有装置区控制岗、公用工程岗及包装岗。装置区控制岗及公用工程岗主要为巡检作业,每2h巡检1次,每次约1h,巡检工存在短时间暴露;包装机为半自动包装,包装岗为固定岗位作业,生产班制为四班运转,在进行包装及装卸时长时间暴露,每班累计接触2h。

2.8.2 职业病危害因素检测结果 检测顺酐 12 个点位,样

品数75个; 苯3个点位,样品数15个; 二甲苯1个点位,样品数3个; 一氧化碳1个点位,样品数3个; 噪声6个点位,样品数15个。检测样品数共111个,检测结果均在国家职业卫生接触限值内。

2.9 报警设施和车间事故通风的调查

该项目按照《工作场所有毒气体检测报警装置设置规范》 (GBZ/T223-2009),对苯、一氧化碳设有报警器,警报值分别为 $10~mg/m^3$ 、 $30~mg/m^3$ 。包装车间事故通风按《工作场所防止职业中毒卫生工程防护设施规范》设计,事故通风次数 $12~\chi/h$ 。

3 讨论

该项目工艺先进成熟,采取了密闭化、自动化控制。在正常生产情况下,检测结果均符合国家职业卫生接触限值要求,采取的各项职业病防护措施达到了控制效果。建议企业对防护设施应定期维护及保养,确保其效果;加强对作业工人正确使用个人防护用品的监督管理;细化应急预案中发生职业中毒事故后的应急救援措施,最大限度减少损失,降低事故危害后果。

某大型国有煤矿职业病危害现状评价

Assessment report on present status of occupational hazards in a certain state-owned coal mine

门金龙,张放,张士怀,马娟,曲玮

(山东省职业卫生与职业病防治研究院,山东 济南 250062)

摘要:通过对某大型国有煤矿生产过程中的职业病危害调查、工作场所职业病危害因素检测、实验室分析,掌握该煤矿目前职业病危害现状和管理现状,明确该煤矿职业病防治工作的目标和关键控制点,为该煤矿进一步完善职业病危害防治措施提供依据,切实保护劳动者健康。

关键词: 职业病危害; 国有煤矿; 现状中图分类号: R135 文献标识码: B 文章编号: 1002-221X(2014)06-0459-02

DOI: 10. 13631/j. cnki. zggyyx. 2014. 06. 030

我们于 2013 年 4~6 月对某大型国有煤矿进行了职业病 危害现状调查。

1 对象与方法

职业卫生人员通过对某大型国有煤矿现场职业卫生调查和查阅资料、档案,对可能存在的职业病危害因素进行识别。内容包括:企业基本情况、生产工艺流程、职业卫生防护设施、个人防护用品、作业场所职业病危害因素检测与评价、应急救援设施、接触职业病危害劳动者开展职业健康监护、职业健康检查、职业病发病情况等。

收稿日期: 2013-09-05; 修回日期: 2014-07-10 基金项目: 山东省软科学研究项目(2013RKC03002)

作者简介: 门金龙(1965—),男,副主任技师,从事职业病危害因素检测与评价研究。

通讯作者: 张放, E-mail: zhangfang2816@sina.com。

2 结果

2.1 一般情况

该煤矿于 1968 年 4 月建成正式投产,目前生产以普采、 炮采、炮掘为主,年产量为 96 万 t 原煤、精煤 51 万 t 、煤矸 石 32 万 t 、煤泥 12 万 t ,THJ422E4303 电焊条年用量 5 t ,乳 化炸药年用量 3 t 。

生产分为矿井采煤、掘进、井底运输、矿井提升、地面 选煤、矿井设备维修及公用工程。

井下采煤生产工艺: 煤层注水→割煤机试运转→采煤切割作业→装煤→刮板输送机运煤→胶带输送机运煤→设备检修。井下掘进生产工艺: 注水打眼→装药连线瓦斯检验→爆破洒水→通风→出渣→矿车运输。地面选煤生产工艺: 原煤经带式输送机运至准备车间,经原煤分级筛筛分处理后再经缓冲仓进入主厂房入洗; 原煤进入跳汰机,矸石、中煤经过斗提机排出; 跳汰机溢流精煤进入精煤脱水筛,8~0.75 mm精煤再进入离心机进行二次脱水,脱水后进入精煤皮带。

2.2 工作场所存在的职业病危害因素

该煤矿生产过程中产生的主要职业病危害因素见表 1。硫化氢主要来源于含硫矿物及矿井下坑木等有机物腐烂,二氧化硫来源于含硫矿物的氧化及燃烧,氮氧化物来源于巷道掘进、采煤时的炸药爆破,矽尘主要来源原煤选矸石,噪声来源于煤炭开采、原煤分选等作业。

 mg/m^3

表 1 煤矿各岗位职业病危害因素

10.1	MW INDMEMBER
职业病危害因素	存在岗位
硫化氢、二氧化硫	各采煤工作面、割煤机、刮板式溜子机、胶带 大巷、回风巷、井底煤仓
一氧化碳	各采煤工作面、各掘进工作面、胶带大巷、井 底煤仓、地面锅炉房
氮氧化物	各掘进工作面、地面锅炉房
锰及其化合物	电焊维修作业
煤尘	各采煤工作面、割煤机、刮板式溜子机、胶带 大巷、回风巷、井底煤仓、煤场、选煤厂灌仓 皮带、入洗皮带
矽尘	选煤厂首选皮带
电焊烟尘	电焊维修作业
噪声	割煤机、刮板式溜子机、耙装机、皮带机、主 井绞车、副井绞车、通风机房、压风机房、选 煤厂灌仓皮带、入洗皮带
手振传动	各掘进面风动工具打眼

2.3 职业病危害因素检测结果

普通采煤工作面割煤机采煤时煤尘 (呼尘) 浓度最高达 4.87 mg/m³, 巷道掘进耙装机装矿石(矽尘呼尘) 浓度最高达 1.83 mg/m³,分级筛巡检工噪声强度高达89.7 dB(A),打眼 工手传振动测量值高达 24.7 m/s²,均超过了国家职业卫生标 准,检测结果见表2。

2.4 职业病防护设施和个人职业防护用品

2.4.1 防尘措施 采掘工作面: 采取煤层注水、采煤机高压 喷雾降尘,液压支架移架采用自动喷雾降尘,各皮带转载点、 破碎机等处进行喷雾洒水,按照煤体水分、采煤机工况和采取 2.5 职业健康监护情况 其它降尘措施的不同而调节工作面最佳风速,采煤工作面最佳 排尘风速 1.4~1.6 m/s, 采掘工作面湿式打眼、放炮前后洒水 清尘、使用水炮泥、迎头放炮远程喷雾、进回风净化水幕 水帘。

地面工作场所防尘: 原煤仓、成品仓和矸石仓均采用封闭 结构,储煤场采用高压水枪喷雾,各个转载点设有自动喷雾洒 水装置,道路扬尘除采取绿化方式外,洒水车定时洒水,电焊 维修车间配备了局部排风扇。

- 2.4.2 防毒措施 KSS-200 束管监测系统,实现 CO、CO₂、 $CH_4 \times O_2 \times N_2$ (计算值) 气体含量的 24 h 在线连续监测。
- 2.4.3 防噪措施 主副井绞车房分别设置了隔声控制室,中 央风井通风机出风道设置组合式消声装置,值班室采用隔 声门。
- 2.4.4 个人使用的职业病防护用品 按国家规定的劳保发放的 年限来给职工发放工作服、防尘口罩,接触高噪声人员佩戴防 噪声耳塞,接振人员配备防振手套。现场调查及工作场所职业 病危害因素检测期间发现部分工人未佩戴个人防护用品。

(上接第421页)

3 例患者均存在心肌酶谱异常,低钾、低钠、低钙等电解 质紊乱,考虑与氟利昂引起机体缺氧、ATP 合成障碍,导致 Na⁺及 Ca²⁺ 泵功能异常有关。

本组病例再次提示,不能因氟利昂毒性低而忽视其安全 问题,从事相关作业要做好职业危害告知及健康教育,制冷

		_,0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	12773-4714	0.
检测项目	岗位(工种)	浓度(或强度)	接触限值	结果判定
煤尘	采煤机司机	4. 87(C _{TWA})	2. 5(PC-TWA)	超标
	采煤工	2. 30(C _{TWA})		不超标
	溜子司机	2. 12(C _{TWA})		不超标
	煤仓工	1. 89(C _{TWA})		不超标
	井下皮带司机	2. 03(C _{TWA})		不超标
	耙装司机	3. 42(C _{TWA})		超标
	掘切工	1. 78(C _{TWA})		不超标
	井上皮带司机	2. 23(C _{TWA})		不超标
	铲车司机	1. 93(C _{TWA})		不超标
矽尘	井下装矸工	1.83(C _{TWA})	0.7(PC-TWA)	超标
	井上选矸带工	0. 52(C _{TWA})		不超标
电焊烟尘	维修工	3. 26(C _{TWA})	4(PC-TWA)	不超标
一氧化碳	各作业场所	0. 12 \sim 0. 23(C_{TWA})	20(PC-TWA)	不超标
二氧化硫	各作业场所	$< 0.2 (C_{TWA})$	5(PC-TWA)	不超标
硫化氢	各作业场所	$< 0.52(C_{TWA})$	10(MAC)	不超标
一氧化氮	各作业场所	0.06 ~0.10(C_{TWA})	15(PC-TWA)	不超标
二氧化氮	各作业场所	0. 07 ~ 0. 13(C_{TWA})	5(PC-TWA)	不超标
锰及其化合物	维修工	0. 12(C _{TWA})	0.15(PC-TWA)	不超标
噪声	采煤机司机	84. 6 dB(A)	85 dB(A)	不超标
	采煤工	79. 6 dB(A)		不超标
	溜子司机	87. 5 dB(A)		超标
	耙装司机	85. 6 dB(A)		超标
	井下打眼工	86. 4 dB(A)		超标
	井上皮带司机	83. 5 dB(A)		不超标
	灌仓皮带机司	机 83.6 dB(A)		不超标
	分级筛巡检工	89.7 dB(A)		超标
手传振动	井下打眼工 8	. 21 ~24.7[ahw(m/s ²)][5ahw(m/s ²)]	超标
	•	•	•	

该煤矿 2011 年、2012 年职业健康查体发现活动性肺结核 2 例,慢性阻塞性肺病3例,慢性间质性肺病4例,煤工尘肺观 察对象 5 人; 2 人调离了原岗位,其他人员已退休定期进行 疗养。

3 讨论

从该煤矿工作场所职业病危害因素检测结果看,采煤工接 触煤尘浓度、掘进工作面装矿部位砂尘浓度都较高,超过国家 职业接触限值,工人在此环境下长期工作,可导致尘肺病的发 生:长期接触分级筛、井下打眼等的噪声会对听力造成损伤, 还会对心血管及神经系统造成一定的影响; 长期使用振动工具 可导致局部振动病,握力下降,肌电图异常肌纤维颤动、肌萎 缩和疼痛等,应引起高度重视。

该煤矿虽然定期对接触职业病危害因素的职工进行职业查 体,但也有少部分职工因各种原因未能参与。企业应合理安排 职业危害因素超国家职业限值岗位的工作时间,以减少职业危 害;依据实际情况及时更换防护设施,加强使用管理,切实保 护职工健康。

设备需要经常检修;发生泄漏要合理通风,加速扩散;防毒 面具要常备,抢修时注意佩戴;发生事故及时处理,尽可能 进行现场监测。

参考文献:

[1] 何凤生. 中华职业医学 [M]. 北京: 人民卫生出版社, 1999: 527.