3.2 辐射危害关键控制措施探讨 正常生产运行 时, 化工、芯块制备部分操作非密封源, 物料状态多 为粉末状, 生产过程中极易形成放射性气溶胶, 工作 人员吸入后造成内照射危害。在今后的运行过程中应 加强该区域的现场防护管理及设备、管道密封性的定 期检查, 防止物料逸出; 加强场所气溶胶浓度监测, 使气溶胶浓度维持在控制值以内。

该生产线存在多种辐射风险,企业应强化辐射安 全卫生意识,通过日常辐射安全卫生知识的教育和培 训,提高作业人员的防护意识并认识到辐射危害的严 重性; 定期对应急救援设施进行检查维护, 发现问题 及时检修,确保安全有效,预防核临界、UF。泄漏、 转炉爆炸等事故的发生;加强操作人员放射防护基础 知识及操作技能等方面的教育培训,提高操作技能, 使其严格按照标准规程进行操作, 防止物料洒落等意 外事故的发生;组织针对可能发生事故类型的应急演 练, 检验和提高应急组织机构的响应能力、工作人员 熟悉和胜任应急工作的程度; 定期对事故应急预案进 行评议和修改,提高预案的有效性、科学性和可操 作性。

正常生产运行下工作人员受照剂量较低, 但在检 修污染设备时常需拆卸、更换零部件,会伴有放射性 气溶胶的释放, 应加强检修过程中的辐射防护措施, 严格按程序操作,减少操作扰动引起的气溶胶释放, 将辐射危害降到最低水平[2]。

参考文献

- [1] 马跃峰, 薛向明, 武晓燕. 某核燃料元件生产线职业病危害控制 效果评价[J]. 中国工业医学杂志, 2016, 29 (2): 149-151.
- [2] 姜霞,杨雪,王秀琴.某地浸采铀矿山放射性职业病危害控制效 果评价 [J]. 中国工业医学杂志, 2015, 28 (1): 61-62.

(收稿日期: 2019-07-05; 修回日期: 2020-01-02)

某生物质发电工程粉尘检测结果分析

Analysis on dust detection results of a biomass power generation project

常志强. 刘亚杰

(兵器工业卫生研究所, 陕西 西安 710065)

摘要: 采用现场调查和职业卫生检测方法, 对某生物质 发电工程产生粉尘场所、接触岗位和职业病防护设施进行调 查、检测。结果显示,生物质发电工程存在木粉尘、其他粉 尘 (秸秆粉尘等混合粉尘、生物质燃烧后的灰渣)。作业人员 接触的其他粉尘 C_{TWA} 1.3~10.3 mg/m³、超限倍数 0.36~2.9、 木粉尘 C_{TWA} 5.6 mg/m³、超限倍数 3.1;接触粉尘超标岗位均 为粉尘【级作业。提示破碎、燃料输送、捅渣工序是粉尘作 业关键控制点, 应采取有效的工程防护措施和管理措施, 加 强作业人员个体防护。

关键词:生物质;发电;粉尘 中图分类号: R135.2 文献标识码:B 文章编号:1002-221X(2021)01-0081-03 DOI: 10. 13631/j. cnki. zggyyx. 2021. 01. 025

近年来,我国生物质发电取得了一定的发展,已 培育形成了较完整的设备制造能力和产业服务体系, 对促进农村发展、实现节能减排发挥了很大作用。现 通过对甘肃省某生物质发电工程进行现场调查、检 测,掌握工程运行过程中粉尘分布及其浓度现状,为

类似工程采取防尘防护措施提供参考依据。

1 对象与方法

以甘肃省某 1×30 MW 生物质发电工程为调查对 象,对生产工艺、原材料、作业方式、职业病防护设 施等进行调查,明确生物质发电工程产生粉尘的场所 分布及接触岗位。依据《工作场所空气中有害物质监 测的采样规范》(GBZ 159-2004)、《工作场所有害 因素职业接触限值 第1部分: 化学有害因素》(GBZ 2.1—2007) 等进行现场采样和检测。

2 结 果

2.1 工艺流程 将供应商提供的秸秆、林业废弃物 等燃料由汽车运至燃料棚, 经破碎、胶带输送机转 运,送入锅炉燃烧,释放的热量加热锅炉中的水产生 高温高压的蒸汽,蒸汽推动汽轮机并带动发电机产生 电能:锅炉排放的烟气经除尘器由烟囱排入大气;除 尘器过滤的飞灰及锅炉底渣经除灰渣系统进入灰库、 渣仓, 灰场储存或综合利用。生物质发电工艺流程见 图 1。

作者简介:常志强(1979-),男,主管医师,从事职业卫生评价 工作。

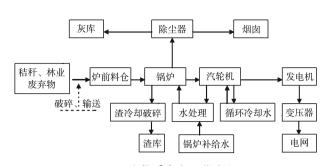


图 1 生物质发电工艺流程

2.2 主要职业病危害因素种类及分布 该生物质发电工程在燃料储存、破碎、输送以及锅炉燃烧、除灰渣过程中产生粉尘。燃料输送系统产生的粉尘主要为有机粉尘,其中树根破碎环节产生木粉尘,秸秆破碎环节产生秸秆粉尘,燃料输送环节产生树根、秸秆的混合粉尘,锅炉燃烧后产生树根、秸秆燃烧后的灰渣。经测定,各类粉尘中游离 SiO₂含量均<10%,粉尘性质分别为木粉尘、其他粉尘。生物质发电工程运行过程中粉尘分布情况见表 1。

表 1 生物质发电工程运行过程中粉尘性质及分布

衣 1 生物质及电工程运行过程中初生性质及分布							
作业场所	工种	设备/工序	粉尘性质				
燃料储运区	过磅员	地磅房	其他粉尘(树根、秸 秆的混合粉尘)				
	皮带工1	秸秆破碎机、秸秆输 送机	其他粉尘 (秸秆粉尘)				
	皮带工2	树根破碎机	木粉尘 (木粉尘)				
	皮带工3	卸料间、燃料输送皮 带、给料机	其他粉尘(树根、秸 秆的混合粉尘)				
	转载机司机	转载机驾驶室	其他粉尘(树根、秸 秆的混合粉尘)				
锅炉区	炉前给料工	炉前给料机、粉料器	其他粉尘(树根、秸 秆的混合粉尘)				
	锅炉巡检工	一次风机、二次风机、 流化风机	其他粉尘(树根、秸 秆燃烧后的灰渣)				
	冷渣器看护工	冷渣机	其他粉尘(树根、秸 秆燃烧后的灰渣)				
	除尘器看护工	布袋除尘机、吹灰器	其他粉尘(树根、秸 秆燃烧后的灰渣)				
	输渣机看护工	输渣机、灰库	其他粉尘(树根、秸 秆燃烧后的灰渣)				
	0 m 杂工	锅炉房0m层	其他粉尘(树根、秸 秆燃烧后的灰渣)				
	捅渣工	锅炉	其他粉尘(树根、秸 秆燃烧后的灰渣)				
灰场	看护工	灰场卸车、扬尘	其他粉尘(树根、秸 秆燃烧后的灰渣)				

2.3 作业场所空气中粉尘检测 在本工程满负荷运行条件下,对作业场所粉尘进行采样,采用个体采样和定点采样相结合的方式,连续采样3d。共计检测接触粉尘作业工种11个,其中4个工种接触粉尘浓度超标,超标率36.4%。检测产生粉尘的工作地点21个,其中7个工作场所粉尘超限倍数超标,超标率33.3%。根据《工作场所职业病危害作业分级第1部分:生产性粉尘》(GBZ/T229.1—2010),秸秆破碎机、秸秆输送机、树根破碎机、燃料输送皮带、锅炉捅渣涉及的4个岗位粉尘作业分级为 I 级。作业场所空气中粉尘检测结果见表2、表3。

表 2 作业场所空气中粉尘时间加权平均浓度检测 mg/m³

作业场所	工种	粉尘种类	$C_{ m TWA}$	PC-TWA	结果判定
燃料储运区	过磅员	其他粉尘	1. 3	8	符合
	皮带工1	其他粉尘	9.5	8	不符合
	皮带工2	木粉尘	5.6	3	不符合
	皮带工3	其他粉尘	10. 3	8	不符合
	转载机司机	其他粉尘	6.0	8	符合
锅炉区	炉前给料工	其他粉尘	2. 3	8	符合
	锅炉巡检工	其他粉尘	2. 9	8	符合
	除尘器看护工	其他粉尘	3.8	8	符合
	输渣机看护工	其他粉尘	3. 3	8	符合
	0 m 杂工	其他粉尘	2. 3	8	符合
	捅渣工	其他粉尘	9. 2	8	不符合

2.4 防尘措施

- 2.4.1 燃料储运区 干料仓库周围设置防风抑尘 网;尽量降低燃料卸载点落差,落差较大的落料管设置缓冲锁气装置;带式输送机导料槽采用密闭罩,2 条燃料输送皮带分别设置1套除尘系统。
- 2.4.2 锅炉区 锅炉微负压运行,0 m 层采用水冲洗;炉渣采用密闭输送机输送至渣仓,加湿后外运;除灰、输灰系统密闭,灰库设袋式除尘器,飞灰密闭罐车外运。
- 2.4.3 灰场 周围种植高大耐旱绿植,可以降低风速、减小扬尘;定期洒水降尘,并对局部无法洒水或覆盖的区域喷洒固结剂;出入口设车辆冲洗设备。
- 2.5 职业病防护用品 用人单位为接触粉尘作业人员配发随弃式防颗粒物口罩(防护级别不低于 KN90,指定防护因数 10),建立职业病防护用品发放台账,劳动者在作业过程中能正确佩戴,实际接触的粉尘浓度符合职业接触限值。
- 2.6 职业健康监护 燃料输送系统产生的粉尘以有

表3 作业场所空气中粉尘超限倍数检测

	11 III.	3//11 (1//)	T/GIV III	XX 127.	1/1	
作业场所	工种	采样地点	检测浓度	超限	最大超	结果
		/工序	(mg/m^3)	倍数	限倍数	判定
燃料储运区	过磅员	地磅房	4. 7	0. 59	2	符合
锅炉区	皮带工1	秸秆破碎机1	22. 8	2.9	2	不符合
		秸秆输送机1	22. 5	2.8	2	不符合
		秸秆输送机 2	21.8	2. 7	2	不符合
	皮带工2	树根破碎机	9.4	3. 1	2	不符合
	皮带工3	1#皮带	22. 3	2. 8	2	不符合
		2#皮带	21. 1	2.6	2	不符合
		给料机	14. 1	1. 78	2	符合
	转载机司机	转载机驾驶室	12. 0	1.5	2	符合
	炉前给料工	炉前给料机	7.8	0. 98	2	符合
		粉料器	6.8	0.85	2	符合
	锅炉巡检工	一次风机	4. 7	0.56	2	符合
		二次风机	5. 3	0.66	2	符合
		流化风机	3. 9	0.49	2	符合
	冷渣器看护工	冷渣机	2. 9	0.36	2	符合
	除尘器看护工	布袋除尘机	8. 3	1.0	2	符合
		吹灰器	8. 5	1. 1	2	符合
	输渣机看护工	输渣机	7. 2	0.9	2	符合
		灰库旁	12. 3	1.5	2	符合
	0 m 杂工	锅炉房0 m	6. 2	0.78	2	符合
	捅渣工	锅炉捅渣	22. 8	2. 8	2	不符合

机粉尘为主,其中所含木粉尘占比较高。木粉尘是国际癌症研究机构公布的确认致癌物(G1),应关注其对人体的健康危害。生物质燃烧后产生的粉尘以无机粉尘为主,作业人员长期接触高浓度粉尘可导致呼吸系统炎症反应,甚至尘肺病。用人单位委托有资质的职业健康检查机构,按照《职业健康监护技术规范》(GBZ188—2014)规定的检查项目和周期,对接触粉尘作业的劳动者进行职业健康检查,未检出疑似职业病和职业禁忌证。

3 讨论

由于生长条件及生物质自身所需养分的不同,不同种类生物质的灰成分含量有较大差别。秸秆类生物质的主要成分为钾、钙和硅等;木屑类生物质硅含量稍低,钙含量较高,镁含量也比秸秆类生物质高^[1]。本工程使用的燃料主要为林业废弃物(树根)和农

业废弃物 (秸秆),初始水分含量低,需破碎后方能进炉燃烧,燃料破碎设备未配备除尘器控制扬尘,秸秆、树根破碎工序作业人员接触粉尘浓度超标,与使用秸杆、花生壳、树皮及稻壳等不需进行燃料破碎的生物质发电项目检测结果有差异^[2]。破碎后的燃料由带式输送机送人料仓,破碎皮带至燃料输送皮带卸载点导料槽密闭不严,燃料下落伴随诱导风流、冲击气流使粉尘迅速扩散^[3],从导料槽未密封部位泄露;同时,布置燃料输送皮带的地下卸料间未能及时清扫,随着皮带等机械设备运行产生振动,二次扬尘严重;该场所皮带工接触粉尘浓度超标。捅渣工定期在炉底附近位置进行捅渣作业,炉渣下落冲击产生大量飞灰;输渣机密闭性较差,飞灰向锅炉间逸散,捅渣工接触粉尘浓度超标。生物质发电的灰渣囤积在露天灰场,如储存不当易造成二次扬尘^[2]。

燃料破碎和转运、除灰渣系统、灰场可作为生物质发电工程粉尘危害的关键控制点,并应采取以下措施对作业场所粉尘进行控制: (1)燃料储存区卸料位设置卸料棚、挡料板,上料位一侧加装挡料帘,尽量实行密闭化作业^[4]。(2)破碎机配备除尘设施,根据《小型火力发电厂设计规范》(GB 50049—2011)将破碎过程产生的粉尘充分捕集。(3)燃料卸载点在采取除尘设施、缓冲措施的基础上,合理确定除尘器吸风口位置^[3],做好导料槽、落料管的密闭。(4)采用密闭带式输送机转运燃料^[5],带式输送机及廊道采用负压清扫设备,减少二次扬尘。(5)加强炉底桶渣作业人员的个体防护。(6)做好灰场的洒水、降尘工作,减少扬尘。

参考文献

- [1] 杜胜磊,钱柯贞,杨海平,等.制灰温度对生物质灰特性影响[A].第五届全国研究生生物质能研讨会暨2011年中科院研究生院新能源与可再生能源研究生学术论坛[C].2011;409-415.
- [2] 龚伟, 倪金玲. 某生物质直燃发电项目职业病危害关键控制点分析 [J]. 中国职业医学, 2012, 39 (1): 27-30.
- [3] 张有狮, 荆德古, 贺龙翔, 等. 基于气固两相流的带式输送机转载点控尘技术研究 [J]. 中国煤炭, 2014, 40 (10); 122-126.
- [4] 高衍新, 王德军, 隋少峰, 等. 生物质发电建设项目粉尘作业危害与控制[J]. 中国卫生工程学, 2014, 13 (2): 91-93, 97.
- [5] 杨玉红. 某生物质发电建设项目职业病危害预评价 [J]. 中国卫生工程学, 2011, 10 (6): 447-450.

(收稿日期: 2019-12-16; 修回日期: 2020-01-18)