· 动 态 ·

2011—2020 年职业性噪声危害研究文献计量学分析

张玉侠1、张晋蔚1、江迪蔚2、高云霞3、王致1,2

(1. 广州市第十二人民医院职业环境与健康重点实验室,广东广州 510620; 2. 暨南大学基础医学与公共卫生学院; 3. 广州 医科大学公共卫生学院)

关键词:噪声;文献计量学;可视化分析中图分类号:TB53 文献标识码:C 文章编号:1002-221X(2022)05-0471-03 **DOI**: 10.13631/j.cnki.zggyyx.2022.05.028

为了解职业性噪声接触人群的健康状况,及时采取有效防护措施降低噪声危害发生率,本文对2011—2020年有关职业性人群噪声危害研究文献进行统计分析,旨在为今后的研究提供参考。

1 资料与方法

- 1.1 文献检索与筛选 选择中国知网 (CNKI) 和万方数据库中文学术期刊作为文献来源,主题词为"噪声作业"or"职业噪声",时间范围 2011—2020 年,通过对文献题目、摘要和关键词的分析,剔除新闻宣传、会议报告、征文启示以及与研究主题无关的文献,最终纳入文献 635 篇。
- 1.2 研究工具及方法 利用 CiteSpace 软件对我国有关职业人群噪声主题的研究进行可视化分析^[1,2],以关键词为网络节点类型,时间间隔设置为 1 年,图谱选取最小生成树(minimum spanning tree)算法和对数似然率(log-likelihood ratio,LLR)算法,参数设置 Top N=45,得到关键词聚类表和关键词突现结果。突现结果反映了某时间段内出现较多或使用频率较高的关键词,对职业人群噪声研究的热点和发展趋势进行总结。采用 Python 对文献关键词和调查指标进行词频统计。使用 Excel 建立表格,阅读分析最终纳入研究的文献,进行文献信息的数据录入,按照发表时间进行文献数量、收录期刊、发表机构的频数和构成比分析。

2 结 果

2.1 文献基本情况

2.1.1 时间分布 纳入文献的发表时间详见图 1。

基金项目:广州市卫生健康科技项目(编号: 20221A011060) 作者简介:张玉侠(1994—),女,博士,主任医师,主要从事职业卫生研究。

通信作者: 王致, 主任医师, 硕士生导师, E-mail: zhi_wang@outlook.com

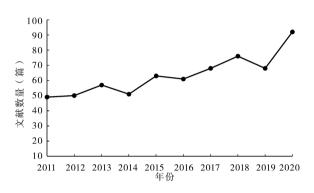


图 1 2011—2020 年职业性噪声研究文献时间分布

2.1.2 期刊和发文机构 10年间收录和发表论文数量最多的10种期刊和机构见表1,共有355篇(55.91%)论文收录在前10种期刊;发表文献最多的10家机构中,前3位机构分别是广州市职业病防治院(37篇)、河南省职业病防治研究院(28篇)、广东省职业病防治院(24篇),3家机构发文量占论文总数的14.02%。

表 1 2011—2020 年收录和发表职业人员噪声 研究论文最多的 10 种期刊和机构

期刊 收录论文(机构名称	发表论文(篇)	
职业与健康	115	广州市职业病防治院	37	
中华劳动卫生职业病杂志	82	河南省职业病防治研究院	28	
工业卫生与职业病	34	广东省职业病防治院	24	
职业卫生与应急救援	31	舞钢劳动卫生职业病防治研究所	19	
中国工业医学杂志	25	中国疾病预防控制中心职业卫生与中毒控制所	15	
中国职业医学	22	江阴市疾病预防控制中心	13	
中国卫生工程学	14	江苏省疾病预防控制中心	13	
职业卫生与病伤	13	塔里木油田职工医院	9	
环境与职业医学	10	中山市疾病预防控制中心	9	
现代预防医学	9	广西职业病防治研究院	8	

2.2 文献研究内容

2.2.1 热点主题 对关键词进行聚类分析,得到共现网络聚类表。由表 2 可见,共呈现 10 个聚类,Modularity (Q值) >0.3 表示聚类显著,平均轮廓值 (silhouette, S值) >0.7 为令人信服的聚类^[3]。

聚类号	聚类大小	关键词 (选取前5个)
0	72	噪声,噪声作业,防护效果,重庆市,精神卫生
1	70	噪声作业,噪声作业工人,职业健康监护,职业健康检查,分析
2	62	听力损伤, 职业健康体检, 心血管系统, 听力, 噪声作业人员
3	57	工龄, 听力损失, 职业病危害, 累积噪声暴露量, 噪声防护
4	53	高血压,心电图,高温,职业噪声,心电图异常
5	50	职业健康,高频听力损失,噪声强度,身心健康,高频听阈
6	41	噪声暴露,作业工人,人因工程学,健康状况,异常率
7	38	职业危害,强度,仪器警报,职业体检,工业噪声
8	36	作业场所,消声,监测,边界噪声,隔声
9	34	职业性噪声聋,听力保护,纯音听力测试,风险评价,降噪措施

表 2 关键词共现网络聚类

2.2.2 研究趋势 基于关键词共现和关键词聚类结果,2011—2020年共9个突现关键词。见表3。

表 3 2011—2020 年突现关键词

关键词	突现强度	起始年份	终止年份	2011—2020年
作业人员	2. 53	2011	2015	
纯音测听	2.46	2011	2013	
听力损伤	2. 79	2014	2015	
职业卫生	2.48	2014	2016	
职业健康	3.81	2018	2020	
职业健康检查	2.77	2018	2018	
影响因素	2.75	2018	2020	
双耳高频平均听阈	2. 54	2018	2020	
噪声作业人员	2. 99	2019	2020	

注: __关键词的突现阶段, __该关键词非当年突现词。

2.2.3 关键词统计 采用 CiteSpace 对筛选后的文献关键词进行统计。由表 4 可见,中心性>0.1 的关键词共有 4 个,分别是噪声、噪声作业、听力损失和听力损伤,亦为出现频次最多的关键词。

表 4 关键词分布

中心性	频次	
0. 62	303	
0. 20	99	
0. 21	65	
0. 16	52	
0. 07	47	
0.08	38	
0. 10	33	
0.06	28	
0. 10	25	
0. 05	23	
	0. 62 0. 20 0. 21 0. 16 0. 07 0. 08 0. 10 0. 06 0. 10	

2.2.4 调查指标 提取 635 篇文献中具有统计学意义的研究指标,出现频次最高的 10 个研究指标分别

是听力损失、工龄、接噪工龄、年龄、性别、噪声强度、心电图、等效声级、噪声暴露情况和高血压。将研究指标大致归纳为噪声接触、人口学、健康状况和健康影响因素四类,各指标的出现频次及占有意义指标的出现频次情况详见表 5。

3 讨论

本次研究对 2011—2020 年职业人群噪声研究的 调查指标进行统计分析, 反映出近 10 年我国职业人 群噪声研究的情况。本次分析显示, 2011-2020 年 有关噪声危害研究的文献逐年增加,于 2020 年达到 高峰。发表论文数量最多的 10 家机构中有 4 家位于 华南地区,与该地区以汽车制造业为主的产业结构存 在关联。利用 CiteSpace 软件对文献内容进行分析, 基于关键词聚类表. 将近 10 年间的职业人群噪声研 究归纳为"噪声作业"、"听力损伤"、"职业健康"、 "心血管系统"四个主题,即为研究的热点主题。 CiteSpace 中突现结果反映了某时间段内出现较多或 使用频率较高的关键词, 突现强度越高, 说明关键词 的频次变化越大,可以通过关键词突现强度分析判断 某一阶段该领域的研究趋势。2011—2020年,"职业 健康"、"噪声作业人员"和"听力损伤"等关键词 是重要的研究关注点: 2018—2020 年, 职业性噪声 危害的研究热点是"职业健康"、"影响因素"、"双 耳高频平均听阈"和"噪声作业人员";由此可发现 不同时期职业人群噪声流调的研究趋势有所不同。

本次关于对噪声职业健康危害的调查指标分析显示,出现频次较高的健康状况指标有听力损失、心电图、高血压等,噪声声级、性别、年龄、吸烟、防护措施等是噪声对听觉和心血管系统健康效应的主要影响因素^[46]。

表 5	文献调查指标分析
衣こ	人

调查指标	出现频次	占总文献比(%)	占有意义指标 出现频次比(%)	调查指标	出现频次	占总文献比(%)	占有意义指标 出现频次比(%)
噪声接触				健康状况			
接噪工龄	324	51. 02	75. 31	听力损失	437	68. 82	73.68
噪声强度	187	29. 45	30. 48	心电图	154	24. 25	66. 23
等效声级	144	22. 68	21. 53	高血压	95	14. 96	70. 53
噪声暴露情况	143	22. 52	86. 01	血压	91	14. 33	72. 53
高频听阈	81	12. 76	65. 43	噪声聋	75	11.81	33. 33
纯音听阈	50	7. 87	60.00	职业禁忌证	43	6. 77	32. 56
累积噪声暴露量	48	7. 56	68. 75	血常规	36	5. 67	33. 33
电测听	19	2. 99	42. 11	肝功能	35	5. 51	28. 57
噪声声级	15	2. 36	33. 33	尿常规	32	5. 04	25. 00
语频听阈	13	2. 05	76. 92	体质量指数 (BMI)	29	4. 57	44. 83
人口学				健康影响因素			
工龄	378	59. 53	73. 54	吸烟	66	10. 39	46. 97
年龄	306	48. 19	56. 86	饮酒	60	9. 45	31. 67
性别	262	41. 26	51. 53	防护措施	18	2. 83	33. 33
工种	65	10. 24	40.00	防护用品	33	5. 20	48. 48
行业	62	9. 76	50.00	耳塞	30	4. 72	36. 67
岗位	54	8. 50	14. 81	粉尘	30	4. 72	26. 67
企业规模	54	8. 50	72. 22	高温	29	4. 57	65. 52
文化程度	42	6. 61	47. 62	基因	48	7. 56	45. 83
经济类型	39	6. 14	66. 67	耳机	17	2. 68	76. 47
年份	25	3. 94	96. 00	单核苷酸多态性(SNP)	16	2. 52	43. 75

既往国内对噪声职业人群健康影响的研究多集中于躯体疾病,而噪声对劳动者心理疾病和认知障碍影响的文献并不多见,希望能进一步深入探究噪声对个体心理健康和认知功能的不利影响^[7-9]。

本次研究的不足之处在于仅纳入了 CNKI 和万方数据库收录的中文文献,全面性有所欠缺。今后应突破文献范围和类型的限制,扩充文献数量,以更准确地反映职业性噪声危害的研究趋势和热点。

参考文献

- [1] Chen CM, Hu ZG, Liu SB, et al. Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace [J]. Expert Opin Biol Ther, 2012, 12 (5): 593-608.
- [2] Chen CM. Searching for intellectual turning points: Progressive knowledge domain visualization [J]. Proc Natl Acad Sci USA, 2004, 101 (Suppl 1): 5303-5310.
- [3] 陈悦,陈超美,胡志刚,等.引文空间分析原理与应用 [M].北京:科学出版社,2014:24.

- [4] 杨书, 胡双球, 黄微, 等. 株洲市噪声作业工人听力监测分析 [J]. 中华劳动卫生职业病杂志, 2020, 38 (3): 227-231.
- [5] Aarhus L, Engdahl B. Occupational noise exposure and asymmetric hearing loss: Results from the HUNT population study in Norway [J]. Am J Ind Med, 2020, 63 (6): 535-542.
- [6] 旷聃,涂程,余艳艳,等.噪声所致高频听力损失的个体预测模型研究[J].中华劳动卫生职业病杂志,2018,36(7):523-526.
- [7] Hahad O, Prochaska JH, Daiber A, et al. Environmental noise-induced effects on stress hormones, oxidative stress, and vascular dysfunction: Key factors in the relationship between cerebrocardiovascular and psychological disorders [J]. Oxid Med Cell Longev, 2019 (2019); 4623109.
- [8] Dzhambov AM, Lercher P. Road traffic noise exposure and depression/ anxiety: An updated systematic review and meta-analysis [J]. Int J Environ Res Public Health, 2019, 16 (21): 4134.
- [9] Leijssen JB, Snijder MB, Timmermans EJ, et al. The association between road traffic noise and depressed mood among different ethnic and socioeconomic groups. The HELIUS study [J]. Int J Hyg Environ Health, 2019, 222 (2): 221-229.

(收稿日期: 2022-01-07; 修回日期: 2022-03-19)